

Generic Co-Inform

architecture – Version

3
D4.3

#ThinkCheckShare

2

Document Summary Information

Project Title: Co-Inform: Co-Creating Misinformation-Resilient Societies

Project Acronym: Co-Inform Proposal Number: 770302

Type of Action: RIA (Research and Innovation Action)

Start Date: 01/04/2018 Duration: 36 months

Project URL: http://coinform.eu/

Deliverable: D4.3 Generic Co-Inform architecture – Version 3

Version: 1.0

Work Package: WP4

Submission date: 31/07/2019

Nature: Demonstrator Dissemination Level: P

Lead Beneficiary: Scytl Secure Electronic Voting, SA (SCYTL)

Author(s):

Pau Julià, Director of Security (SCYTL)

Contributions from:

Ronald Denaux (ESI)

Martino Mensio, Research Assistant (OU)

Adrià Rodríguez-Pérez, Project Manager (SCYTL)

David Salvador, Technical Manager (SCYTL)

The Co-Inform project is co-funded by Horizon 2020 – the Framework Programme for Research and

Innovation (2014-2020) H2020-SC6-CO-CREATION-2016-2017 (CO-CREATION FOR GROWTH AND

INCLUSION).

http://coinform.eu/

3

Revision History

Version Date Change editor Description

0.1 31/05/2019 SCYTL
Initial version

Update on section iv.

0.2 20/06/2019 OU Update on sections ii., iii., vi.

0.3 21/06/2019 ESI Update on section i.

0.4 27/06/2019 SU Few comments added

0.5 01/07/2019 SCYTL
Update on section v.

Overall review

1.0 31/07/2019 SU Final review. Submission

Disclaimer

The sole responsibility for the content of this publication lies with the authors. It does not
necessarily reflect the opinion of the European Union. Neither the Co-Inform Consortium nor the
European Commission are responsible for any use that may be made of the information contained
herein.

Copyright Message

©Co-Inform Consortium, 2018-2021. This deliverable contains original unpublished work except
where clearly indicated otherwise. Acknowledgement of previously published material and of the
work of others has been made through appropriate citation, quotation or both. Reproduction is
authorised provided the source is acknowledged.

4

Executive Summary

This report provides a third version of the architecture of the Co-Inform platform. It focuses on

interoperability at business and information level, to be developed in an agile manner.

The system architecture of the Co-Inform project will be component-based and layered. Robustness,

scalability and multi-user access support are important system characteristics.

The architecture is designed based on general requirements from WP1 and its output will be a

specification of the components of the system (coming from the research project partners in WP1

and WP3), of how they interact (e.g., flows of control and data), and specification of programmable

interfaces so that different partners can build their components independently. In addition to the

components from the technical partners, the architecture provides infrastructural components

required in the system’s design, some examples being a data store, security (access control), and

scheduling of automated tasks.

This deliverable upgrades the details provided for the platform architecture in D4.2. It feeds from

the latest technological developments from partners involved in WP3 and WP4.

This deliverable will be complemented in one additional iteration (D4.4), to be submitted in M21.

The upcoming versions will feed from the on-going results from WP1, WP2 and WP3.

5

Table of Contents

1. Introduction .. 6

2. Co-Inform high-level architecture ... 7

2.1. Diagram ... 7

2.2. Components’ description .. 7

i. Data collector (DC) .. 8

ii. Misinformation Detection (MD) .. 12

iii. Misinformation Flow Analysis and Prediction (MFAP) .. 14

iv. Browser Plugin .. 15

v. Plugin Gateway .. 16

vi. Perception Flow and Behaviour Mining (PBM) ... 17

2.3. Data Flow... 18

3. Conclusions ... 19

Table of Figures

Figure 1 High Level Architecture ... 7

Figure 2 Crawling and Text Analysis .. 10

Figure 3 Data Collector .. 12

Figure 4 Misinformation Flow Analysis and Prediction ... 15

Figure 5 Browser Plugin .. 16

Figure 6 Perception and Behaviour Mining ... 17

Figure 7 Data flow ... 18

Table of Abbreviations
BP Browser Plugin

DC FE Data Collector Front End

DC Data Collector

ESI Expert System Iberia

GDPR General Data Protection Regulation

MD Misinformation Detection

MFAP Misinformation Flow Analysis and Prediction

ML Machine Learning

PBM Perception and Behavior Mining

PG Plugin Gateway

WP Work Package

6

1. Introduction

Misinformation online generates misperceptions. The speed and ease in which false news spread

on social media have a massive impact on current affairs and policies. By bringing together a

multidisciplinary team of researchers and experts in computer science, behavioural science, and

sociology, Co-Inform aims at engaging all stakeholders in fighting misinformation by providing them

with the tools to identify ‘fake news’ online, understand how they spread, and provide them with

verified information.

To this end, Co-Inform will integrate its ICT tools and services (WP3) and policy encodings (WP2) to

deliver a co-created misinformation resilience platform in the form of:

• A browser plugin to raise citizens’ awareness of fully or partially misinforming content,

of related fact-checking articles and corrective information, of average citizens’

perceptions towards this content, and of key pro and against comments from fellow

citizens.

• A dashboard for fact-checking journalists and policymakers, showing that

misinformation was detected, where originated from, how and where it has spread and

will spread in the near future, what’s the current and predicted public perception, and

what are the key comments about it from the public. The dashboard will also show the

news articles or information that users requested to be fact-checked.

This deliverable describes the high-level architecture of the Co-Inform platform, including the

interaction between its expected components.

This is a preliminary version of the architecture, which builds on the contents of D4.2 and feeds from

the developments in the framework of WP3 and WP4. The goal of the document is to study different

technical designs to accommodate the end user requirements that will be gathered in the

framework of WP1.

The current document will be again reviewed, updated and detailed as required in order to comply

with the set of requirements gathered with the platform’s end-users in the course of the activities

within WP1, with the management policies from WP2 and with the services developed in WP3.

Specifically, it will be updated in one additional iteration (D4.4), to be submitted in M21.

7

2. Co-Inform high-level architecture

2.1. Diagram

The following diagram (Figure 1) illustrates the high-level architecture proposed for the Co-Inform

platform:

Figure 1. High Level Architecture

BP: Browser Plugin
PG: Plugin Gateway
MD: Misinformation Detection
DC: Data Collector

MFAP: Misinformation Flow Analysis and
Prediction
PBM: Perception Behaviour Mining

2.2. Components’ description

The following components will be needed to implement the Co-Inform architecture, based on the

technical proposal submitted to the European Commission and the latest developments within WP3

and WP4.

Depending on the specific requirements gathered within the activities carried out in WP1, some of

these components may be integrated into a single component or some of them could be split in

other modules. These modules must be understood as a baseline to implement a more detailed

infrastructure once these requirements are defined.

8

i. Data collector (DC)

The Data Collector (DC) is the module in charge of collecting the information that is processed using

ESI’s industry-leading text analytics technology.

Broadly speaking, this module accepts as an input a list of sources and configurations that it uses to

start a text analysis process.

After a short time, the found documents, along with the analysis results, are placed in a database;

the contents of which are searchable and accessible to other modules via a document API.

Next, we explain the various terms, data structures and subcomponents in more detail.

The Data Collector Front End (DC FE) provides a way to specify and manage (i.e. add, remove, edit)

sources and configurations to the DC. Although the types of supported sources have to be formally

defined as part of pilot requirements in WP1, we provide support for the following types of sources:

websites to crawl, RSS feeds, social media accounts/pages, search keywords and off-line documents

(e.g., PDFs, Word documents, etc.). Besides specifying the type of the source, the administrator has

to specify additional configuration parameters such as:

• Locator: this will typically be a URL to describe the site (e.g. https://snopes.com), rss

feed (e.g. https://www.snopes.com/feed/), search engine (e.g. google, bing +

keywords), location of the off-line documents.

• Collection: Since we have multiple pilots in Co-Inform, we keep documents from each

pilot in a separate ‘section’ of the database. This means that sources need to be bound

to a specific collection/pilot. We assume that most sources will be specific to each pilot,

although in some rare cases it may be possible that the same source will be used in

multiple collections. The system may process these sources multiple times, although

this could be avoided as part of the implementation of the data collector.

Another reason why specifying a collection is useful is because we may want to perform

special types of analyses on documents for a particular use case in the future (e.g., if we

know that the use-case is migration, we may want to use a custom document classifier

on these documents.

Likewise, if we know that the use case is about a specific area in Sweden, we may want

to provide a text analysis service that has a more fine-grained knowledge of places,

people and political issues in Sweden, rather than using a generic text analysis service).

• Frequency: how often should the source be re-crawled. Some types of sources are

dynamic (i.e., they change every few hours, such as news feeds), while others are static

(e.g. news articles).

• Crawl depth: in the case of websites to crawl, but also social media accounts and search

keywords, it can be useful to not only collect the initial website and social media posts,

but also to collect further pages/posts referenced by them.

The configuration options presented above are indicative. We specify the list of configuration

parameters based on requirements, implementation and usage. At the moment, we have

implemented the DC FE as a graphical interface (GUI) that is only accessible to administrators from

ESI. In the future we may consider providing an API, since it can be more flexible.

https://snopes.com/
https://www.snopes.com/feed/

9

However, it is still unclear who will be the stakeholders who should have access to this API. In

general, it makes sense to restrict access to this interface as it can have an impact on the number of

documents that will be in the system, thus affecting possible system performance. An overly broad

selection of sources can result in overly large collections of documents, which will make the overall

system harder to use as there may be too many documents to explore and analyse.

The Data Collector submodule uses the sources and configurations specified using the DC FE to

crawl the web, find documents and analyse them. As described above, some sources may be re-

crawled at defined intervals. Figure 2 describes the working of this submodule in more detail and

shows that it has two main functionalities: crawling and datamining.

• The crawler (Data Processing Engine in Figure 2) processes the input document (e.g. an

html page or PDF) and extracts its textual content and metadata (e.g. published date,

author). A recent development that is relevant to Co-Inform is that many fact-checking

articles are now including metadata (https://schema.org/ClaimReview)1 that makes it

easier for machines to gather the main claim being evaluated and provide a basic result

for the fact-checking exercise. If this kind of sites will be included in the pilots, it may be

necessary for the Data Collector component to include this kind of metadata as part of

the extracted document (and eventually include this information as part of the

database).

• The datamining step enriches the extracted document by automatically adding

annotations such as categories (according to various generic taxonomies such as

Intelligence, Crime and Terrorism), entities (places, people, organisations, domain

specific), sentiment/emotion and relations (tuples or triples between entities and/or

categories). Depending on the languages supported by the text analysers, the original

document text may need to be translated. In particular, it may be necessary to translate

all non-English documents into English (using third party machine translation services),

to make it easier for researchers to evaluate and inspect the gathered documents.

The database provides an API for accepting and updating analysed documents and stores them in

representations optimised for storage and retrieval. It also provides a low-level API for retrieving

analysed documents. Since this is an internal API, we do not specify it in further detail in this

document and leave it as an implementation issue. The main constraints are that it must be able to

store textual data (the content of the documents), metadata and extracted fields. Ideally, the

internal API will allow for exploratory search of documents based on facets, since this allows

exploring the dataset in an intuitive way (e.g. each search response lists the number of results which

have a specific category or entity).

Finally, the database must be deployed in such a way that it safeguards in both a physical and legal

manner any personal data. Therefore, the database will be compliant with requirements of

information security as well as associated legal requirements laid down in GDPR and the project’s

Data Management Plan (D7.1).

1 Fact-checking sites do this because it helps search engines such as Google or Bing to index these
sites and highlight them as part of search results.

https://schema.org/ClaimReview

10

As the project develops, data controllers and/or data processors (all project partners) will ensure to

take appropriate measures in a case-by-case manner when faced with direct or indirect personal

data following the provisions of GDPR article 4 et al. Further distinction will be made whenever data

can be anonymised and therefore falling outside the scope of GDPR. Naturally, this needs to be

continuously analysed in the consortium, since we need to balance:

• The fact that most sources are publicly available: i.e. does it make sense to anonymise

mentions of Donald Trump in news articles? Similarly, mentions of users in Facebook or

Twitter are already searchable.

• Informational requirements by downstream components. For example, the

Misinformation Detection component may only work (or work much better) if the

identity of authors of documents are known; hence in this case, anonymising this

information will be counterproductive to the goals of the project.

Figure 2. Crawling and Text Analysis

The document API provides an interface available to other modules in the system for exploring and

retrieving analysed documents. The API is available as a web service (e.g. using REST), over a secure

connection (e.g. requiring authentication and using secure HTTP). The API provides two main

services:

• Search: can be used to search and explore documents in a particular collection. This

service has a long list of input parameters, described in D3.1, but they can be

conceptually conceived as four types of input parameters:

11

o Collection: a unique name or identifier

o Keywords: a list of keywords that need to be matched against the text in the

document. If deemed necessary, we may provide a simple query language similar

to that used by well-known search engines in order to allow users to make some

keywords mandatory, to allow for conjunction or disjunctions of keywords, etc.

o Filters: a list of filters to narrow the set of results. These filters will typically be based

on facets returned by previous search results. Filters will include categories,

entities, dates (published, acquired), authors, sources, etc.

o Pagination: since search results may be in the order of thousands of documents,

users may need to request the results in “pages”, where each page has a certain

number of results.

The output of this service is also described in detail in D3.1, but they include fields like:

o url: used to identify the document

o metadata: a selection of the most relevant metadata (e.g., title, author, publisher,

source, publishing date, published metadata).

o Search result metadata: total number of results, pagination information, available

facets.

• Collection: returns a list of collections (or sections of the database) that are available to

search.

To make integration with other components as easy as possible, we provide a specification of this

API in a format that allows for easy client generation and testing, like OpenAPI

(https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0. md) and Swagger

(https://swagger.io/so lutions/api-design/). The specification can be found at

https://app.swaggerhub.com/apis/ESI_co-Inform/co-inform/1.0

In terms of performance, the requirements still need to be specified as part of WP1. However, in

technical terms, we assume that the Data Collector should be able to process documents in both

batch mode and monitoring mode. The batch mode is useful at the beginning of a pilot, as many

sources need to be ingested (depending on the quantity of sources and documents this may take

minutes or hours). Once the initial set of sources has been processed, the monitoring mode keeps

track of new documents at regular intervals. Analysis of these results should become available after

a few minutes. Searching services should provide search results in mere seconds and quicker than

that if they are to be used for interactive user-facing applications (which should be possible by using

appropriate paging and search query parameters).

In terms of volume of documents, we expect that the conjunction of all pilots will not require storage

of more than about ten million documents. If more documents are expected or required by

downstream components or specific pilots, this will need to be specified in advance, since this may

require special deployment plans to ensure good performance for such a volume of documents.

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md
https://swagger.io/so%20lutions/api-design
https://app.swaggerhub.com/apis/ESI_co-Inform/co-inform/1.0

12

Figure 3. Data Collector

For more information about the implementation of this component within Co-Inform, we refer to

D3.1.

ii. Misinformation Detection (MD)

The Misinformation Detection (MD) module is developed as part of T3.2 in WP3 and aims at

detecting misinformation using different methods. This will help managing misinforming content in

large amounts of documents on social media or other information sources. As part of the work in

T3.2, different models and services will be considered, such as an automated misinformation

detection tool, and a dubious URL identifier service.

In general, most of the models developed by WP3 will require annotated data (although some

models may be unsupervised) and will rely on Machine Learning (ML) models. Such data may be

accessed from existing third-party data sources or from datasets shared with the Co-Inform

consortium, as well datasets collected through the Data Collector (DC) module (T3.1). A typical MD

service will need data that is different while it is trained (e.g., annotation labels) compared to when

it is deployed for usage.

In most cases the input data required will need to contain the textual content (and media) of a given

information that needs to be evaluated as well as associated metadata (e.g. content creator, sharing

information, creation date, language, linked social network, etc.) as well as annotation labels if

available that can be used for training the MD services (e.g. information/misinformation labels).

13

This data can be collected from different information sources such as social media websites (e.g.

Twitter, Facebook, etc.) or news websites. In general, this information is useful both for detecting

the claims on social platforms (new ones and sharing known ones) and for analysing their spread

and evolution.

Besides a particular content or claim, the following external information will be used as input such

as:

• Historical data about claims. Fact-checking datasets can be used both for spotting and

for predictive models. This type of data needs to contain information about particular

claims (e.g. who, what, where and when a claim has been done). Also, some information

from the fact-checking process of known fact-checker sources: a label indicating the

type of claim (e.g., factual, fake, satire, ...), the author of the reviewing process;

• Knowledge bases and ontological relations. External knowledge bases (e.g., DBPedia,

WikiData) can be also used for identifying semantic information related to particular

documents and help study plausible relations in content;

• Information network and/or social network. Another important type of input that will

be used is the network associated with the author of a claim or the claim information

network (i.e., the interconnection between different claims). This data will be

particularly relevant for bot discovery and the Misinformation Flow Analysis and

Prediction (MFAP) module.

In general, the models will return probabilities of a given information (or URL or account) to be

related to misinformative or informative content (or another relevant label). In the case of a dubious

URL identifier, the service may be used for detecting new URLs containing misinformation or

suggesting related URLs (e.g. similar historical content URLs or relevant fact-checking URLs).

The format of the output may be structured possibly following existing schemas such as the

ClaimReview schema (http://schema.org/ClaimReview) or the Veracity ontology

(http://socsem.open.ac.uk/ontologies/veracity/).

The trained MD services will follow standard API development practices by providing RESTful web

service where the claim or other information that needs to be check is submitted to a service and a

JSON object containing probabilities and labels is returned.

Currently, two different services are being developed as part of the MD module: 1) a service for
identifying misinformation based on information sources and historical annotated data, and 2) a
claim detection service that extracts important text snippets from documents.

The first service takes inputs from the DC component and other data sources and provides an API
that can be used to see the relation of sources and twitter accounts with misinformation. For a
certain source, it is possible to see how experts (fact-checkers and other evaluations) reviewed or
debunked it. And for a certain twitter account it is possible to see the interaction it had with
misinformation, fact-checking, verified news and debunked ones. These API provide the results of
analysis using REST.

http://schema.org/ClaimReview
http://socsem.open.ac.uk/ontologies/veracity/

14

As part of the MD module, the claim detection service is designed for extracting sentence claims
from textual content so they can be verified against an historical claim database or additional
components of the MD module. The model is developed using machine learning and is trained on
multiple datasets from various domains, so it is possible to extract claims in multiple situations.
Although the claim API is still evolving, it follows the Open API v3 specification
(http://spec.openapis.org/oas/v3.0.2) and provides an interactive documentation using Swagger
(https://swagger.io). The API accepts both textual input or URLs and returns a list of sentence
claims.

The MD module and APIs will be connected and work together with the Misinformation Flow

Analysis and Prediction (MFAP) module by providing the primary information necessary to analyze

the flow of misinformation in social networks.

iii. Misinformation Flow Analysis and Prediction (MFAP)

This Misinformation Flow Analysis and Prediction (MFAP) module will work together with the

Misinformation Detection (MD) module using data similar to the one used by the MD module. The

aim of this module is to determine patterns of different types of misinformation across the social

networking platforms and to provide different metrics and measures associated with particular

information flows in social networks in order to better understand how misinformation spread and

evolves.

Similar to the previous module, the different services provided for the MFPA module will require

historical data from different data sources including data collected by the Data Collector (DC)

module. This module will require different types of input such as:

• Misinformation management policies. The WP2 policies can act as parameters that can

regulate the behaviour of the model and/or inform the MFAP models’ functionalities.

• News articles and historical data. Data collected over time such as the information

collected by the DC module can be used for making misinformation predictions.

• Information network and/or social network data. This data can be used to understand

the topology and typology of the network that connects the different actors (publishers,

accounts influenced by the content) identifiable in the historical data.

• Misinformation analysis tools. The MD module can be used for accessing important

information about information nodes and actors and can be used to label some specific

nodes in the social graph.

With this information available, the MFAP module should be able to track over time the diffusion of

the claim instances, their evolution, reception, and amplification by different actors. The flow

analysis will apply ML models that can be used to capture temporal features (such as the impact of

a certain claim over time, or the related sentiment reaction to it) of the flow of misinformation.

This module will have several outputs, that will be made available to other modules. The results

provided will be of different nature, such as:

• Cascading patterns. Tracking the claims from their source and following them based on

the historical data and social network information. These results can contain aggregated

http://spec.openapis.org/oas/v3.0.2
https://swagger.io/so%20lutions/api-design

15

information that describe the spread of a certain claim, or a certain group of claims

(identified e.g. by their topic, source, veracity...). Examples can be the number of

shares/influenced users/likes/people talking about it over time, eventually describing

how different groups of users/personas have been affected;

• Predictors of misinformation flow: given some seeds in input (such as claim, topic,

source, veracity, sentiment), ML models could be used to predict the spread of the

considered misinformation, giving insights like the number of people that will be

influenced by it, and what their reactions would be.

Figure 4. Misinformation Flow Analysis and Prediction

iv. Browser Plugin

The Browser Plugin will be the end user module (i.e. for social media users). It will analyse the end

user navigation data and together with both the Misinformation Flow Analysis and Prediction

(MFAP) module and the Misinformation Detection (MD) module it will inform the user about the

credibility of the information being accessed. The communication between the plugin and both the

MD and MFAP is done through the Plugin Gateway (PG) module that acts as an API gateway2.

The plugin’s architecture is based on a centralised architecture. For every relevant website that the

user loads, the plugin will send data to the Plugin Gateway. This data will be the content of the

website (mainly the text) and some metadata (website’s URL, timestamp). Before the data is

received by the MD or the MFAP, some anonymisation methods, such as IP removal, assignation of

a transaction ID, etc. will be applied. Then, the data will be processed in order to diagnose whether

2 https://microservices.io/patterns/apigateway.html

16

it corresponds to misinformation or not. After the diagnostic, a response will be sent to the plugin

which will show the user a confidence level on the website or post that is currently visiting.

Figure 5. Browser Plugin

v. Plugin Gateway

Following modern web application best practices, this module acts as a single-entry point for all the

requests generated by the browser to the Co-Inform platform. Once a request is received, the Plugin

Gateway extracts certain data that will be sent to the Misinformation Detection (MD) module for

later processing. At the same time, anonymised statistical data is sent to the Perception Flow and

Behaviour Mining (PBM) module.

Given that the MD module can take up some considerable time solving a request, a unique

identification number will be returned to the browser plugin on every request made. It is the

browser plugin’s responsibility to query the Plugin Gateway for a resolution on the initiated request

by providing the unique identification number. With this behaviour a more flexible, fault-tolerant,

and scalable system is achieved.

The Plugin Gateway can be complemented with a database acting as a MD cache to improve

requests resolution times and reduce traffic in the system.

17

vi. Perception Flow and Behaviour Mining (PBM)

Using the analysis and classification conducted by the Misinformation Detection (MD) module and

the Misinformation Flow Analysis and Prediction (MFAP) module and using the statics and

reactions collected by the Browser Plugin made available by the Plugin Gateway (PG), this module

will provide statistics on misinformation behaviours.

This module will provide dashboards and statistics about the misinformation managed within the

whole system. The specific parameters of each end-user will be inputted into the PBM module

through a web front end.

User characteristics that could influence their engagement with misinformation might include age,

culture, prior opinions, interests, exposure, etc.

The PBM module will attempt to collect such information (e.g. from user’s profiles, timeline analysis)

to support the prediction analysis of misinformation flow. Spreading and acceptance or rejection of

misinformation can be analysed (e.g. using opinion mining) to gauge the user’s behaviour towards

a particular piece of misinformation, and how this behaviour changes (or does not change) after an

intervention (which will be provided by WP5) is executed.

To this end, services for extracting user characteristics and opinion will be required, which would

take input data such as: user profile, user posts (timeline), and off-the-shelf opinion mining

methods.

Figure 6. Perception and Behaviour Mining

18

2.3. Data Flow

The following diagram (Figure 7) depicts the data flows between the different components:

Figure 7. Data flow

Data collector (DC)

• Input:

• URLS

• Social Networks

• Output:

• Data Base with
collected
information

Misinformation Detection
(MD)

• Input:

• DC output

• Policies and
parametrization

• Output

• Classified and
processed
information

Misinformation flow
analysis and prediction
(MFAP)

• Input:

• Parametrization

• Policies

• MD output

• Output

• Patterns for plugin

Browser Plugin

1.Input:

1.MFAP output

2.Client interaction

2.Output

1.User Feedback

PBM

19

3. Conclusions

This deliverable describes the high-level architecture of the Co-Inform platform, including the

interaction between its expected components. Specifically, it provides a high-level specification for

the platform components and their expected interaction, namely:

• Data Collector (DC)

• Misinformation Detection (MD)

• Misinformation Flow Analysis and Prediction (MFAP)

• Browser Plugin (BP)

• Perceptions and Behaviour Mining (PBM)

This is still a preliminary version of the architecture, which will be revised, updated and detailed as

required in order to comply with the set of requirements gathered with the Platform’s end-users in

the course of the activities within WP1, with the management policies from WP2 and with the

services developed in WP3. Specifically, it will be updated in one additional iteration (D4.4), to be

submitted in M21.

Specifically, future versions of this deliverable should also specify:

• Specification of components

• Workflow and integration of components

• API documentation

• Hosting architecture

