

Policies and
Procedures for
Interventions

Deployment and
Testing

D2.2

#ThinkCheckShare

2

D2.2 Policies and Procedures for Interventions Deployment and
Testing

Document Summary Information

Project Title: Co-Inform: Co-Creating Misinformation-Resilient Societies

Project Acronym: Co-Inform Proposal Number: 770302

Type of Action: RIA (Research and Innovation Action)

Start Date: 01/04/2018 Duration: 36 months

Project URL: http://coinform.eu/

Deliverable:
D2.2 Policies and Procedures for Interventions Deployment and
Testing

Version: V1.3

Work Package: WP2

Submission date: 30/09/2019

Nature: P
Dissemination
Level:

P

Lead Beneficiary: University of Koblenz-Landau (UKOB)

Author(s):

Ipek Baris (UKOB)
Akram Sadat Hosseini (UKOB)
Oul Han (UKOB)
Prof. Dr. Steffen Staab (Coordinator, UKOB)

Contributions
from:

Martino Mensio (OU)
Ronald Denaux (ESI)
Mattias Svahn(SU)

Love Ekenberg (IIASA)

Eleni A. Kyza, Evangelos Karapanos, Loukas Konstantinou
(CUT)

Syed Iftkhar H.Shah, Nancy Routzouni, Deligiannis Athanasios,
Dr. Ioannis Magnisalis (IHU)
Orna Young, Allan Leonard (FactCheckNI)

The Co-inform project is co-funded by Horizon 2020 – the Framework Programme for Re-
search and Innovation (2014-2020) H2020-SC6-CO-CREATION-2016-2017 (CO-CREATION
FOR GROWTH AND INCLUSION).

http://coinform.eu/

3

D2.2 Policies and Procedures for Interventions Deployment and
Testing

Revision History

Version Date Change editor Description

0.1 8.9.2019 UKOB Initial draft

0.2 16.9.2019 UKOB Added introduction, policies

0.3 16.9.2019 OU Added description for credibility
module

0.4 17.9.2019 ESI Added description for semantic
analysis module

0.5 17.9.2019 UKOB Updated policies, added table for
2nd section

0.6 17.9.2019 SU SU workshop plan

0.6 17.9.2019 CUT Review 0.6

0.7 17.9.2019 UKOB Added policies in machine readable
format

0.7 19.9.2019 IHU Review

0.8 20.9.2019 IHU Added Greek 2nd Workshop Plan

0.9 23.9.2019 UKOB Updated introduction

1.0 24.9.2019 FactCheckNI Review, added contents for the
forms

1.1 24.9.2019 IIASA Added content for Austria workshop

1.2 24.9.2019 CUT Added policy evaluation technique

1.3 25.9.2019 UKOB Edited co-creation section, review

4

D2.2 Policies and Procedures for Interventions Deployment and
Testing

Disclaimer

The sole responsibility for the content of this publication lies with the authors. It does not
necessarily reflect the opinion of the European Union. Neither the Co-Inform Consortium
nor the European Commission are responsible for any use that may be made of the infor-
mation contained herein.

Copyright Message

©Co-Inform Consortium, 2018-2021. This deliverable contains original unpublished work
except where clearly indicated otherwise. Acknowledgement of previously published ma-
terial and of the work of others has been made through appropriate citation, quotation or
both. Reproduction is authorised provided the source is acknowledged.

5

D2.2 Policies and Procedures for Interventions Deployment and
Testing

Executive Summary

In this document, we describe the procedures associated with recommended platform policies

and interventions. Co-Inform platform policies integrate stakeholder requirements (i.e. citi-

zens, journalists, and policy makers) identified by WP1 and WP5, and orchestrate services

developed within WP3 and WP4.

In Section 1 we first outline how this work fits the objectives of Co-inform and more specifically

of WP2. This deliverable describes how to manage the responses of the platform with user

feedback, by considering user requirements from WP1 and WP5, and also the services devel-

oped within WP3 and WP4. To this aim, we describe the updated component of the policy

framework (D2.1), which is an open-source ECA (Event-Condition-Action) rule engine that has

been designed for handling real-time misinformation.

The policies and rules automated by the rule engine will be integrated with Co-inform tools

that will be defined by WP3 and WP4. Section 2 describes the co-creation of Co-Inform poli-

cies that will be tested by stakeholders in the second co-creation workshop. Section 3 de-

scribes specifications for the second co-creation workshop that will evaluate the Co-inform

tool prototypes provided by WP3 and WP4 and the associated policies and rules provided by

WP2.

In Section 4, we present details of recommended policies that are defined based on user

requirements obtained by WP5 and WP1 and provide human-readable formalisations and their

risks.

In Section 5, we briefly describe the deployment of policies to the Co-Inform platform. Finally,

we provide the machine-readable formalisation of each policy in the Appendix.

6

D2.2 Policies and Procedures for Interventions Deployment and
Testing

Table of Contents

Introduction 8

1.1. Objective of WP2 and Task 2.2 9

2. Co-Creation of Co-Inform Policies 10

3. Evaluation of Policies 11

4. Co-inform Policies 12

4.1. Flagging Policy 12

i. Flagging Policy #1: Showing the most critical score above threshold 13

ii. Flagging Policy #2: See more, see less button 14

iii. Flagging Policy #3: Notify user 14

4.2. Marking Policy 15

i. Blurring the whole post 15

ii. Blurring the whole post when the cursor is on top of the post 15

iii. Blurring the post partially 16

iv. Blurring the retweet button 16

v. Putting a visual stop sign on top 17

vi. Putting circle information icon on the top 17

vii. Removing a post 18

4.3. Reporting Policy 18

i. Reporting not flagged post 18

ii. Reporting flagged post 20

4.4. User Management Policy 21

i. Spammer user’s policy 21

5. Deployment of Policies 22

6. Conclusion 23

7. References 24

Appendix 25

Flagging Policy 25

i. Flagging Policy #1: Showing the most critical score above threshold 25

ii. Flagging Policy #2: See more/See less 26

iii. Flagging Policy #3: Notify User 26

Marking Policy 26

i. Marking Policy #1 and #2: Blurring post full/partially 26

ii. Marking Policy #3: Blurring retweet button 26

iii. Marking Policy #4: Putting a visual stop sign 27

iv. Marking Policy #5: Putting a circle information icon on the top 27

7

D2.2 Policies and Procedures for Interventions Deployment and
Testing

v. Marking Policy #6: Removing a post 27

Reporting Policy 27

i. Reporting Policy #1: Reporting not flagged post 27

ii. Reporting Policy #2: Reporting flagged post 27

User Management Policy 28

i. Spammer users policy 28

Abbreviations

API Application Programmer Interface, defines how programmers can use a
service or library

JSON JavaScript Object Notation

MCDA Multi-Criteria Decision Analysis

N/A Not available

List of Tables
Table 1. Flagging Policy #1 ECA formalisation in natural language 14

Table 2. Flagging Policy #2 ECA formalisation in natural language 15

Table 3. Flagging Policy #3 ECA formalisation in natural language 16

Table 4. Marking Policy #1 ECA formalisation in natural language 17

Table 5. Marking Policy #2 ECA formalisation in natural language 17

Table 6. Marking Policy #3 ECA formalisation in natural language 18

Table 7. Marking Policy #4 ECA formalisation in natural language 18

Table 8. Marking Policy #5 ECA formalisation in natural language 19

Table 9. Marking Policy #6 ECA formalisation in natural language 19

Table 10. Marking Policy #7 ECA formalisation in natural language 20

Table 11. Reporting Policy#1 ECA formalisation in natural language 21

Table 12. Form for flagging the post .. 21

Table 13. Reporting Policy #2 ECA formalisation in natural language 23

Table 14. Form for unflagging posts .. 23

Table 15. User Management Policy #1 ECA formalisation in natural language 24

8

D2.2 Policies and Procedures for Interventions Deployment and
Testing

Introduction
Germany’s NetzDG law implementation1 in 2017 attributed liability to platforms if they fail to

remove defamatory content and hate speech within a time limit and imposed large fines up to

50 million Euro. Approaches like these that choose “the stick” over “the carrot” are currently

considered to be the most effective measures for increasing (self-)policing by the big plat-

forms.2 The limitation is that governments merely regulate misinformation-handling policies

rather than co-creating them. As a result, regulation provides quantified indices that lead to

deleting more misinformation than before, but platform policies are still created and tested by

the platforms, whose intention is not governance in the public interest. This is why most direc-

tives on misinformation policies ask for transparency from online platforms.

In platform policies for combating misinformation, transparency is crucial in order to balance

the strengths and weaknesses of automated AI. On the one hand, algorithms efficiently auto-

mate the detection and deletion of potential misinformation. On the other hand, algorithms are

limited in accuracy and endanger the freedom of expression. In order to balance the two, the

fight against misinformation requires a system for integrating automated AI, real-time interven-

tion of experts, and user input in policymaking for and by online platforms. In this spirit, the

European Commission suggested platform policies in September 2017 that respond to misin-

formation by adjusting the ratio of automation versus involving external actors. Example poli-

cies are:3

● Fully automated removal should be applied where the circumstances leave little doubt

about the illegality of the material

● In a limited number of cases, platforms may remove content notified by trusted flaggers

without verifying legality themselves

In order to combat misinformation effectively, platform policies should increasingly involve

stakeholders as part of platform policies against misinformation. Stakeholders are general us-

ers but also journalists, fact-checkers, and policymakers. Then, the Co-Inform platform must

connect all stakeholder requirements with the platform functionalities. To this aim, the stake-

holder requirements must be converted to the rule-based and machine-readable form of

events, conditions, and actions (ECA) (as described in detail D2.1).

We analysed the feedback from the 1st co-creation workshop and from the reviewers of the

preceding deliverables that have given shape to the Co-inform functionalities. From the WP5

1 Act to Improve Enforcement of the Law in Social Networks (Network Enforcement Act,
NetzDG) - Basic Information. Federal Ministry of Justice and Consumer Protection. Retrieved
from
https://www.bmjv.de/DE/Themen/FokusThemen/NetzDG/NetzDG_EN_node.html

2 Schiffrin, A. (2019 August). Startups and the Fight against Online Disinformation. The
German Marshall Fund of the United States. Retrieved from
http://www.gmfus.org/sites/default/files/publications/pdf/Schiffrin%20disinformation%
20startups%20-%2029%20Aug.pdf

3 EC Communication on Tackling Illegal Content Online: Towards an Enhanced Responsibility
of Online Platforms (COM(2017) 555 final). European Commission. Retrieved from
https://ec.europa.eu/transparency/regdoc/rep/1/2017/EN/COM-2017-555-F1-EN-MAIN-
PART-1.PDF

https://www.bmjv.de/DE/Themen/FokusThemen/NetzDG/NetzDG_EN_node.html
http://www.gmfus.org/sites/default/files/publications/pdf/Schiffrin%20disinformation%20startups%20-%2029%20Aug.pdf
http://www.gmfus.org/sites/default/files/publications/pdf/Schiffrin%20disinformation%20startups%20-%2029%20Aug.pdf
https://ec.europa.eu/transparency/regdoc/rep/1/2017/EN/COM-2017-555-F1-EN-MAIN-PART-1.PDF
https://ec.europa.eu/transparency/regdoc/rep/1/2017/EN/COM-2017-555-F1-EN-MAIN-PART-1.PDF

9

D2.2 Policies and Procedures for Interventions Deployment and
Testing

analyses, we have yielded requirements from citizens, journalists, fact checkers, and policy-

makers for combating misinformation on social media. With their requirements in mind, Co-

inform policies and interventions were integrated to support each of these user groups.

1.1. Objective of WP2 and Task 2.2

WP2 aims for the flexible orchestration of services developed within WP3 and WP4 with user

requirements from WP5 and WP1. In this deliverable “Policies and Procedures for Interven-

tions Deployment and Testing”, we describe the procedures associated with platform policies

and interventions. Throughout, our usage of the term “platform policies” stands for internal

regulations of the final Co-inform platform that will provide users with relevant functionalities.

10

D2.2 Policies and Procedures for Interventions Deployment and
Testing

2. Co-Creation of Co-Inform Policies
The scope of the second co-creation workshop is to test and to give feedback about the initial

version of the Co-Inform platform along with the policies (cf. D1.2)4. Participants of the 2nd

workshop i.e. stakeholder groups (citizens, fact-checkers/journalists, and policymakers) will

test and examine the tools and associated policies.

Co-creation workshops will have the following main activities:

● Organizers will present the workshop and its objectives as well as the goals of the

workshops and the agenda. The organizers provide a list of attributes and character-

istics of the policy recommendations developed within Co-Inform, where after the var-

ious features are discussed. Participants may also suggest further options, and exten-

sions.

● The participants have an opportunity to discuss the options and provide feedback.

● The participants discuss more thoroughly the desired features of the policies and pos-

sible variations thereof. All prevailing and possible policy recommendations are dis-

cussed, followed by a discussion of positive and negative sides of the different options.

A result of this session is a list of features that are important for the participants. These

features are the criteria for the subsequent evaluation described in Section Co-Crea-

tion of Co-Inform Policies.

● The participants rank the policy recommendations under each criteria (feature) and

suggest other policies or variations of the prevailing ones. The participants write down

the names of all this on coloured cards, put these on a flipchart and explain their

choices.

● The criteria are ranked in the same way as the tools. Each criterion is first discussed

to make sure that participants agree on their definitions. The participants may also

change and add further criteria.

4 5.4 Second Workshop: Feedback on prototype and policies
As mentioned above, the first workshop is expected to provide insights about the function of the
tools and the features they are expecting to get. Following these, the second workshop is expected
to test and give feedback about the generic version of the tool- that at this time - has to be provided
as a prototype. They also may co-create some parts of the tools (user-interface, for instance).
Stakeholders will also give feedback on strategies that seem most promising in raising awareness
and addressing misinformation

11

D2.2 Policies and Procedures for Interventions Deployment and
Testing

3. Evaluation of Policies
For the evaluations herein, we will put the policies to the test in a series of workshops in three

countries. WP1 has the task to organize these. At these workshops we will utilise the MCDA-

method with a software for integrated multi-attribute evaluation under risk, subject to incom-

plete or imperfect information. The software originates from our earlier work on evaluating

decision situations using imprecise utilities, probabilities and weights, as well as qualitative

estimates between these components derived from convex sets of weight, utility and proba-

bility measures. During the process, we consider the entire range of values as the alternatives

presented across all criteria as well as how plausible it is that an alternative outranked the

remaining ones, and thus provide a robustness measure. We will use the state-of-the-art multi-

criteria software DecideIT5, which allows for imprecision of the kinds that exist here.

At the workshops we will also employ Repertory Grid Technique (Curtis, Wells, Lowry, &

Higbee, 2008).This technique consists of two parts: the semi-structured interview which takes

place first and the rating exercise. Firstly, the nudging interventions are presented to the par-

ticipants in sets of three (i.e., triad) and asked to “identify a way in which two of the concepts

are alike and different from the third”, resulting to the elicitation of personal opposite con-

structs. These constructs will be used later on, when every participant needs to rate all con-

cepts individually, against her own elicited personal constructs, by using scales. The output of

these procedures will undergo qualitative (i.e. content analysis) and quantitative data analysis

with DecideIT and Nvivo6.

Policies which we will describe in Section 4 will be in the form of platform settings or prototypes

with different behaviors. In the second workshops, the users will test them and give feedback

about each policy. Those policies which might not be deployed by the platform will be evalu-

ated with flashcards. We additionally ask their opinions on alternative solutions in form of ECA

(Bae. Bae, Kang & Kim, 2004) (i.e. when this event happens, and under these conditions,

what would you expect to see from the platform, how would you react to it). In this way, we

will collect new policy recommendations.

5 https://www.preference.nu/decideit/
6 https://www.qsrinternational.com/nvivo/nvivo-products

https://www.preference.nu/decideit/
https://www.qsrinternational.com/nvivo/nvivo-products

12

D2.2 Policies and Procedures for Interventions Deployment and
Testing

4. Co-inform Policies
Co-Inform policies orchestrate the technological tools that are developed within the project.

The goals of Co-Inform policies are to:

● deal with critical misinforming posts

● reduce the workloads of WP4 modules (e.g. plugin, dashboard, etc.)

● improve the functional modules of WP3 with detailed user feedback which will be

assessed in WP5

● manage the Co-Inform users for preventing abuse of the platform.

4.1. Flagging Policy

The Co-Inform platform offers technological tools such as a browser plug-in and a dash-

board. These tools are integrated with the modules to be developed within WP3. The mod-

ules produce scores for identifying misinformation as follows:

● Similarity analysis produces a score of similarity between other misinforming posts

● Semantic analysis is a low-level service which produces various features which can

be used to build credibility predictors for content that cannot be directly linked to

human-produced credibility scores.

○ It extracts main topics, emotions, entities, words and phrases (described in

detail in D3.1) and relevant sentences from textual content (a post, a user

timeline or an article accessible on-line).

○ These features can be used in various ways (but require building custom

higher-level services), e.g.:

■ They can constrain the scope of policy rules based on a particular

combination of topics/entities (e.g. categories: Politics, Lobbying; en-

tity: "Migration Watch UK")

■ they can be used as features to a machine learning model to produce

a credibility prediction (based on some relevant dataset)

■ they can be used to find/recommend related articles

■ they can be used to analyse the spread of claims/topics

● User tagging shows the number of users that tagged the post.

● Credibility analysis produces a score of credibility to both users (e.g. twitter pro-

files) and posts. The credibility is computed by matching the entities linked in the

posts (URLs) with the historical data coming from fact-checkers. A post can be mis-

informing because it contains a URL that has been fact-checked or because it comes

from a news source that has been related to misinformation in the past.

● Content analysis provides two main scores. The first one is a score of stances to-

wards the claim-in-discussion. Stance is characterized as supporting the claim, que-

rying the claim, not related to claim, and denying the claim. The module gives a

probabilistic estimation of each group. The second one is a veracity estimation of the

claim-in-discussion by aggregating information from the stance analysis. It gives an

estimation of how the post’s veracity is likely to be false.

13

D2.2 Policies and Procedures for Interventions Deployment and
Testing

The goal of the flagging policy is to deal with misinforming posts. We recommend

the following flagging policies that will be tested at future co-creation workshops:

i. Flagging Policy #1: Showing the most critical score

above threshold

When the system receives scores from each module, and if the scores are above threshold

of their module, the system shows those scores to the users.

The system allows the user to change the threshold for each module. If user defines a cus-

tom threshold for the modules, the system filters critical scores based on user-defined

thresholds.

ECA formalisation in natural language:

 Table 1. Flagging Policy #1 ECA formalisation in natural language

Event System receives the scores from each module of Co-Inform technol-
ogies. Each module gives a score:
Example:
similarity(post) -> score_1
semantic(post) -> score_2
stance(post) -> score_3
veracity(post) -> score_4
credibility(post) -> score_5
...

Conditions Each module has different threshold. One or more scores are above
threshold:
Example:
filter ->
score_1 > threshold_1
score_2 > threshold_2
score_3 > threshold_3
score_4 > threshold_4
score_5 > threshold_5
...
filter(all scores > their thresholds) -> filtered_scores

Actions Show critical scores above threshold:
show(filtered_scores)

ECA formalisation in rule engine:

An example marked with rule language is given in Appendix

Flagging Policy #1: Showing the most critical score above threshold.

Risk:

The subjectiveness of selecting an initial and revised threshold level might present a risk.

14

D2.2 Policies and Procedures for Interventions Deployment and
Testing

ii. Flagging Policy #2: See more, see less button

This policy is one of the flagging policies. The system shows the top n scores where n is the

number of scores. The user can see more/less results by clicking the “see more, see less”

button. User sets top n scores from the settings of the tool.

An example use case of this policy would be to hide the veracity of a claim and/or user

confirmation biases, unless the user clicks “see more” button.

ECA formalisation in natural language:

Table 2. Flagging Policy #2 ECA formalisation in natural language

Event filter(all scores > their thresholds) -> filtered_scores
count(filtered scores) -> num_critical_scores

Conditions num_critical_scores > n && clickedSeeMore == true

Actions getPrioritisedScores(filtered_scores) -> prioritised_scores
expand(prioritised_scores)

ECA formalisation in rule engine:

An example marked with rule language is given in Appendix Flagging Policy #2: See

more/See less,

Risk:

The subjectiveness of the user choosing “more/less” might present a risk.

iii. Flagging Policy #3: Notify user

As

Flagging Policy #1: Showing the most critical score above threshold, the system detects a

misinforming post based on responses from the modules, and then the system notifies the

user by showing the number of new notifications. User can change when to be notified about

a misinforming post by setting the thresholds. A notification occurs when the user settings

are met. When the user clicks on the notification button, it will show a menu with the relevant

notification for the post.

ECA formalisation in natural language:

Table 3. Flagging Policy #3 ECA formalisation in natural language

Event filter(all scores > their thresholds) -> filtered_scores
count(filtered scores) -> num_critical_scores

Conditions num_critical_scores > n && enableNotification == true

Actions notify(user)

ECA formalisation in rule engine:

15

D2.2 Policies and Procedures for Interventions Deployment and
Testing

An example marked with rule language is given in Appendix Flagging Policy #3: Notify

User.

Risk:

Lots of alerts and notifications can be annoying for users, and there is a risk that users turn

off the notifications.

4.2. Marking Policy

As Flagging Policy Flagging Policy, the system receives scores from each module.

When the scores indicate a possibility for misinforming content, the plugin marks the

post. Possible policies for marking the posts are as follows:

i. Blurring the whole post

When the content has misinforming scores from at least n modules where n indicates

the threshold, the system blurs the whole post.

ECA formalisation in natural language:

Table 4. Marking Policy #1 ECA formalisation in natural language

Event count(filtered scores) -> num_critical_scores

Conditions If num_critical_scores >= n

Actions blur(post, blurring_percentage = 100)

ECA formalisation in rule engine:

An example marked with rule language is given in Appendix Marking Policy #1 and #2: Blur-

ring post full/partially.

Risk:

Blurring the whole post could contribute to the interestingness of the post, and hence it pro-

motes the misinformation. To avoid this risk, the post might be blurred only when the cursor

is on top of the post (see Marking Policy #1 and #2: Blurring post full/partially.

ii. Blurring the whole post when the cursor is on top of

the post

When the content has misinforming scores from at least n modules where n indicates the

threshold and the cursor is on top of the post, the system blurs the whole post.

ECA formalisation in natural language:

Table 5. Marking Policy #2 ECA formalisation in natural language

Event count(filtered scores) -> num_critical_scores

16

D2.2 Policies and Procedures for Interventions Deployment and
Testing

Conditions If num_critical_scores >= n && cursorOnPost

Actions blur(post, blurring_percentage = 100)

ECA formalisation in rule engine:

An example marked with rule language is similar to the one given in Appendix Marking Policy

#1 and #2: Blurring post full/partially. The only difference is that an additional condition is

required.

iii. Blurring the post partially

When the content has misinforming scores from at least n modules where n indicates the
threshold, the policy changes the resolution of the content such that it remains readable, but
its quality is affected.

ECA formalisation in natural language:

Table 6. Marking Policy #3 ECA formalisation in natural language

Event count(filtered scores) -> num_critical_scores

Conditions If num_critical_scores >= n

Actions blur(post, blurring_percentage = x)

ECA formalisation in rule engine:

ECA formalisation is similar to policy Marking Policy #1 and #2: Blurring post full/partially.

iv. Blurring the retweet button

When the content has misinforming scores from at least n modules where n indicates the

number of critical scores, the system blurs the retweet button.

ECA formalisation in natural language:

Table 7. Marking Policy #4 ECA formalisation in natural language

Event count(filtered scores) -> num_critical_scores

Conditions If num_critical_scores >= n

Actions blur(post.retweet_button)

ECA formalisation in rule engine:

An example marked with rule language is given in Appendix Marking Policy #3: Blur-

ring retweet button.

Risk:

17

D2.2 Policies and Procedures for Interventions Deployment and
Testing

This policy only informs the user when the user tries to retweet. There is a risk that

the user might not be informed about the reliability of the post.

v. Putting a visual stop sign on top

When the content has misinforming scores from at least n modules where n indicates the

threshold, the system places a stop sign on top in order to warn the user.

ECA formalisation in natural language:

Table 8. Marking Policy #5 ECA formalisation in natural language

Event count(filtered scores) -> num_critical_scores

Conditions If num_critical_scores >= n

Actions place(post, stop_sign)

ECA formalisation in rule engine:

An example marked with rule language is given in Appendix Marking Policy #4: Putting a

visual stop sign.

Risk:

Similar to Marking Policy #1 and #2: Blurring post full/partially, a stop sign could contribute

to the interestingness of the post, and promote the misinformation.

vi. Putting circle information icon on the top

When the content has misinforming scores from at least n modules where n indicates the

threshold, the system places a circle information icon with the words “Potential Misinfor-

mation” and a button that leads to an explanation on why the post is misinforming.

ECA formalisation in natural language:

Table 9. Marking Policy #6 ECA formalisation in natural language

Event count(filtered scores) -> num_critical_scores

Conditions If num_critical_scores >= n

Actions place(post, circle_information_icon, explanation_button)

ECA formalisation in rule engine:

An example marked with rule language is given in Appendix Marking Policy #5: Putting a

circle information icon on the top.

Risk:

N/A

18

D2.2 Policies and Procedures for Interventions Deployment and
Testing

vii. Removing a post

When the content has misinforming scores from at least n modules where n indicates the

threshold, the system removes the post.

ECA formalisation in natural language:

Table 10. Marking Policy #7 ECA formalisation in natural language

Event count(filtered scores) -> num_critical_scores

Conditions If num_critical_scores >= n

Actions remove(post)

ECA formalisation in rule engine:

An example marked with rule language is given in Appendix Marking Policy #6: Removing

a post.

Risk:

System might not have a grant to remove the post from the social media. As a solution, the

post might be reported to the corresponding social media by the system.

4.3. Reporting Policy

The goal of reporting policy is to improve the functional modules of the platform by getting

feedback from users and to detect spammer users of the platform by analysing those feed-

backs.

i. Reporting not flagged post

User can report a post that should be flagged by the system. When the user reports a post,

the system sends a form. When the form is filled by the user, it is saved for analysis by

admins of the system.

ECA formalisation in natural language:

Table 11. Reporting Policy#1 ECA formalisation in natural language

Event User reports a post:
user.report(post)

Conditions post.status = not flagged

Actions System sends a report:
system.sendForm(user) -> form
user.fill(form) -> filled_form
When form is filled by the user, the form is saved for analysis by
admins of the system:

19

D2.2 Policies and Procedures for Interventions Deployment and
Testing

system.save(filled_form, user)

According to the condition, the user receives the following form to report the post that is not

flagged by the system:

The form which will be shown to the user:

Table 12. Form for flagging the post

Why would you flag this content, because it is:
● Satire/Parody
● Misleading content
● Imposter Content
● Fabricated Content
● False Connection
● False Context
● Conspiracy Theory/Rumor
● Private information
● Other
●

Can you provide corrective evidence? (optional)
Attach ----------------- (url)

Definitions of options given in the form are as follows:

● Satire or Parody: No intention to cause harm but has potential to fool

● Misleading Content: Misleading use of information to frame an issue or individual

● Imposter Content: When genuine sources are impersonated

● Fabricated Content: News content is 100% false, designed to deceive and do harm

● False Connection: When headlines, visuals or captions don't support the content

● False Context: When genuine content is shared with false contextual information

● Manipulated Content: When genuine information or imagery is manipulated to de-

ceive

● Private Information: Leak of privacy information

● Other: The user can select this option if none of the above options is the reason of

report. When the user selects the other option, the system takes a textual input from

the user.

When the user fills the form for flagging a post, for each of the options, a pop-up definition
will be shown to the user.

ECA formalisation in rule engine:

20

D2.2 Policies and Procedures for Interventions Deployment and
Testing

An example marked with rule language is given in Appendix Reporting Policy #1: Reporting

not flagged post.

Risk:

User might be a spammer (e.g. bot) who reports the posts several times. In this case, feed-

back analysis by admins of the system will enable to detect these users. Additionally, user

policies described in Spammer user’s policy will protect the system from spammers.

ii. Reporting flagged post

User can report a post that might have been mistakenly flagged by the system and

bot/spammer. Similar toReporting Policy #1: Reporting not flagged post, when the user re-

ports a post, the system sends a form. When the form is filled by the user, the form is saved

for analysis by admins of the system.

ECA formalisation in natural language:

Table 13. Reporting Policy #2 ECA formalisation in natural language

Event User report a post
user.report(post)

Conditions post.status = flagged

Actions System sends a report
system.sendForm(user) -> form
user.fill(form) -> filled_form
When form is filled by the user, the form is saved for analysis by admins
of the system.
system.save(filled_form, user)

Form for posts that might be mistakenly flagged by the system

Table 14. Form for unflagging posts

Why would you unflag this content, because it is:
● Unverifiable Claim
● Opinion
● Known Satire/Parody
● Fact-checked
● New Evidence
● Other

Can you provide evidence? (optional) [URL]

Definitions of options given in the form are as follows:

● Unverifiable Claim: This post contains a claim that cannot be verified or debunked.

● Opinion: This post represents an expression of personal or political opinion or belief.

_Ref20318203
_Ref20318203

21

D2.2 Policies and Procedures for Interventions Deployment and
Testing

● Known Satire/Parody: This post contains material from a self-declared satire/par-

ody publisher [Check against a whitelist]

● Fact-checked: This post has been reviewed by professional fact checkers." [Check

against database of fact-check URLs.]

● New evidence: New evidence is available to review this post's claim(s).

● Other: The user can select this option if none of the above options is the reason of

report. When the user selects the other option, the system takes a textual input from

the user.

ECA formalisation in rule engine:

An example marked with rules language is given in Appendix Reporting Policy #2: Reporting

flagged post.

Risk:

The same risk as for Reporting Policy #1: Reporting not flagged post applies for this policy.

4.4. User Management Policy

User management policy protects the system from spammer users.

i. Spammer user’s policy

If a user requests to flag or not flag more than x times in the past d days, the system

checks if the user provided evidence for posts. If not, the user will be reported as a

spammer, and the system will not accept requests from users that seem to be spammers.

ECA formalisation in natural language:

Table 15. User Management Policy #1 ECA formalisation in natural language

Event num_flagging_post > x

Conditions If num_evidence_post < n

Actions system.changeStatus(user) -> spammer
system.changeFlagging(user) -> disable

ECA formalisation in rule engine:

An example marked with rule language is given in Appendix User Management Policy.

Risk:

The System mistakenly classifies a decent user as a spammer.

22

D2.2 Policies and Procedures for Interventions Deployment and
Testing

5. Deployment of Policies

As we described in D2.1, policies will be registered in a rule engine. The rule engine de-

scribed in D2.1 was a semantic rule engine. In order to cope with the real-time stream of

misinformation, we have updated the rule engine with an open source ECA rule engine7.

The updated rule engine supports the execution of JSON-formatted rules. We provided ma-

chine readable versions of each policy, which are compatible with the updated rule engine,

in the Appendix.

The rule engine will run as a module of the Policy framework8. The policy framework will be

integrated into the Co-Inform platform. The policy framework will communicate with each

module for deciding actions under conditions.

7 https://github.com/j-easy/easy-rules

8 https://github.com/isspek/policy_manager

https://github.com/j-easy/easy-rules
https://github.com/isspek/policy_manager

23

D2.2 Policies and Procedures for Interventions Deployment and
Testing

6. Conclusion

In this deliverable, we have described Co-Inform platform policies with both human-readable

and machine-readable formalisations and provided their risks. Additionally, we explained

how the policies will be evaluated in the upcoming co-creation workshops.

Co-Inform platform policies aim for the orchestration of tools developed within WP3 and

WP4 in an automated manner. As the next step, machine readable formulas of each policy

will be registered to the open-sourced ECA rule engine that is part of the policy framework.

Finally, the Co-Inform platform prototype, along with the policies, will be tested and evalu-

ated at the workshops.

24

D2.2 Policies and Procedures for Interventions Deployment and
Testing

7. References
Curtis, A. M., Wells, T. M., Lowry, P. B., & Higbee, T. (2008). An Overview and Tutorial of

the Repertory Grid Technique in Information Systems Research. Communications of the

Association for Information Systems, 23(November). https://doi.org/10.17705/1cais.02303

Bae, J., Bae, H., Kang, S. H., & Kim, Y. (2004). Automatic control of workflow processes

using ECA rules. IEEE transactions on knowledge and data engineering, 16(8), 1010-

1023.

https://doi.org/10.17705/1cais.02303

25

D2.2 Policies and Procedures for Interventions Deployment and
Testing

Appendix

Flagging Policy

i. Flagging Policy #1: Showing the most critical score

above threshold

{
 "name": "flagging_similarity_rule",
 "description": "similarity above threshold",
 "condition": "similarity >= threshold_similarity",
 "actions": [
 "callback.showAnalysis(\"similarity\", similarity);",
 "critical_score_count = critical_score_count + 1;",
 "callback.showAnalysis(\"critical_score_count\", critical_score_count);"
]
},
{
 "name": "flagging_semantic_rule",
 "description": "semantic above threshold",
 "condition": "semantic >= threshold_semantic",
 "actions": [
 "callback.showAnalysis(\"semantic\",semantic);",
 "critical_score_count = critical_score_count + 1;",
 "callback.showAnalysis(\"critical_score_count\", critical_score_count);"
]
},
{
 "name": "flagging_stance_rule",
 "description": "stance above threshold",
 "condition": "stance >= threshold_stance",
 "actions": [
 "callback.showAnalysis(\"stance\",stance);",
 "critical_score_count = critical_score_count + 1;",
 "callback.showAnalysis(\"critical_score_count\", critical_score_count);"
]
},
{
 "name": "flagging_veracity_rule",
 "description": "veracity above threshold",
 "condition": "veracity >= threshold_veracity",
 "actions": [
 "callback.showAnalysis(\"veracity\",veracity);",
 "critical_score_count = critical_score_count + 1;",
 "callback.showAnalysis(\"critical_score_count\", critical_score_count);"
]
},
{
 "name": "flagging_credibility_rule",
 "description": "credibility above threshold",
 "condition": "credibility >= threshold_credibility",

26

D2.2 Policies and Procedures for Interventions Deployment and
Testing

 "actions": [
 "callback.showAnalysis(\"credibility\",credibility);",
 "critical_score_count = critical_score_count + 1;",
 "callback.showAnalysis(\"critical_score_count\", critical_score_count);"
]
}

ii. Flagging Policy #2: See more/See less

{
 "name": "flagging_policy_see_more_see_less",
 "description": "flagging policy: see more see less",
 "condition": "critical_score_count >= threshold_num_critical_scores &&
button.clickedSeeMore== True",
 "actions": [
 "callback.expand(postId)"
]
}

iii. Flagging Policy #3: Notify User

{
 "name": "flagging_policy_notify_user",
 "description": "flagging policy: notify user",
 "condition": "critical_score_count >= threshold_num_critical_scores &&
system.enabledNotification == True",
 "actions": [
 "callback.notify(userId)"
]
}

Marking Policy

i. Marking Policy #1 and #2: Blurring post full/partially

{
 "name": "marking_policy_blurring_post",
 "description": "marking policy: blurring the post",
 "condition": "critical_score_count >= threshold_num_critical_scores",
 "actions": [
 "callback.showAnalysis(\"critical_score_count\", critical_score_count);",
 "callback.blur(postId, threshold_blur_percentage);"
]
}

ii. Marking Policy #3: Blurring retweet button

{
 "name": "marking_policy_blurring_retweet_button",
 "description": "marking policy: blurring the retweet button",
 "condition": "critical_score_count >= threshold_num_critical_scores",
 "actions": [
 "callback.showAnalysis(\"critical_score_count\", critical_score_count);",
 "callback.place(postId,\"retweet_button\");"
]

27

D2.2 Policies and Procedures for Interventions Deployment and
Testing

}

iii. Marking Policy #4: Putting a visual stop sign

{
 "name": "marking_policy_visual_stop_sign",
 "description": "marking policy: putting a visual stop sign",
 "condition": "critical_score_count >= threshold_num_critical_scores",
 "actions": [
 "callback.showAnalysis(\"critical_score_count\", critical_score_count);",
 "callback.place(postId, stop_sign_icon);"
]
}

iv. Marking Policy #5: Putting a circle information icon

on the top

{
 "name": "marking_policy_putting_circle_information",
 "description": "marking policy: putting a circle information icon on the top",
 "condition": "critical_score_count >= threshold_num_critical_scores",
 "actions": [
 "callback.place(postId, location = top, information_icon, explanation_button);"
]

v. Marking Policy #6: Removing a post

{
 "name":"marking_policy_putting_a_visual_stop_on_top",
 "description":"marking policy: placing a stop sign in order to warn the user",
 "condition":"critical_score_count >= threshold_num_critical_scores",
 "actions":[
 "callback.showAnalysis(\"critical_score_count\", critical_score_count);",
 "callback.place(postId,\"stop_sign\");"
]
}

Reporting Policy

i. Reporting Policy #1: Reporting not flagged post

{
 "name": "reporting policy",
 "description": "reporting policy: reporting not flagged post",
 "condition": "post.flagged == False",
 "actions": [
 "callback.startWorkflowReportNotFlagging(userId,postId);"
]
}

ii. Reporting Policy #2: Reporting flagged post

{
 "name": "reporting policy",
 "description": "reporting policy: reporting flagged post",
 "condition": "post.flagged == True",

28

D2.2 Policies and Procedures for Interventions Deployment and
Testing

 "actions": [
 "callback.startWorkflowReportNotFlagging(userId,postId);"
]
}

User Management Policy

i. Spammer users policy

{
 "name": "user_management_spammer_detection",
 "description": "user management policy: user management policy protects the system from
spammer users. ",
 "condition": "userGroup.equals(\"normal\") && num_flag >= threshold_num_flagging_post
&& num_evidence <= threshold_num_evidence_post",
 "actions": [
 "userGroup = \"spammer\";"
]
},
{
 "name": "user_management_spammer_permission",
 "description": "user management policy: user management policy protects the system from
spammer users. ",
 "condition": "userGroup.equals(\"spammer\")",
 "actions": [
 "callback.restrict(userId, \"tagging\");"
]
}

