

Generic Co-Inform

architecture –

Version 4

D4.4

#ThinkCheckShare

2

D4.4: Generic Co-Inform architecture – Version 4

Document Summary Information

Project Title: Co-Inform: Co-Creating Misinformation-Resilient Societies

Project Acronym: Co-Inform Proposal Number: 770302

Type of Action: RIA (Research and Innovation Action)

Start Date: 01/04/2018 Duration: 36 months

Project URL: http://coinform.eu/

Deliverable: D4.4: Generic Co-Inform architecture – Version 4

Version: 3.0

Work Package: WP4

Submission date: 31/01/2020

Nature: P
Dissemination
Level:

P

Lead Beneficiary: Scytl Secure Electronic Voting, SA (SCYTL)

Author(s): David Salvador, Technical Manager (SCYTL)

Contributions
from:

Ronald Denaux (ESI)

Adrià Rodríguez-Pérez, Project Manager (SCYTL)

Andreas Berg, Developer (SU)

Daniel Forsberg, Developer (SU)

Gregoire Burel, Researcher (OU)

Ipek Baris, Researcher (UKOB)

Akram Sadat Hosseini, Researcher (UKOB)

The Co-inform project is co-funded by Horizon 2020 – the Framework Programme for

Research and Innovation (2014-2020) H2020-SC6-CO-CREATION-2016-2017 (CO-

CREATION FOR GROWTH AND INCLUSION).

http://coinform.eu/

3

D4.4: Generic Co-Inform architecture – Version 4

Revision History

Version Date Change editor Description

0.1 07/01/2020 SCYTL Initial version

1.0 20/01/2020 SCYTL
Merged contributions from all

partners

1.1 24/01/2020 SCYTL
Different updates during

hackathon

2.0 27/01/2020 SCYTL First version ready for review

2.1 28/01/2020 OU First review

3.0 29/01/2020 SCYTL Final version

Disclaimer

The sole responsibility for the content of this publication lies with the authors. It does not
necessarily reflect the opinion of the European Union. Neither the Co-Inform Consortium
nor the European Commission are responsible for any use that may be made of the
information contained herein.

Copyright Message

©Co-Inform Consortium, 2018-2021. This deliverable contains original unpublished work
except where clearly indicated otherwise. Acknowledgement of previously published
material and of the work of others has been made through appropriate citation, quotation
or both. Reproduction is authorised provided the source is acknowledged.

4

D4.4: Generic Co-Inform architecture – Version 4

Executive Summary

This report provides a fourth and final version of the architecture of the Co-Inform platform.

It focuses on interoperability at business and information level, to be developed in an agile

manner.

The system architecture of the Co-Inform project is component-based and layered.

Robustness, scalability and multi-user access support are important system characteristics.

The architecture is designed based on general requirements from WP1 and its output is a

specification of the components of the system (coming from the research project partners in

WP1 and WP3), of how they interact (e.g., flows of control and data), and specification of

programmable interfaces so that different partners can build their components

independently. In addition to the components from the technical partners, the architecture

provides infrastructural components required in the system’s design, some examples being

a data store, security (access control), and scheduling of automated tasks.

This deliverable upgrades the details provided for the platform architecture in D4.3. It feeds

from the latest technological developments from partners involved in WP2, WP3 and WP4.

5

D4.4: Generic Co-Inform architecture – Version 4

Table of Contents

1. Introduction ... 7

2. Platform architecture design ... 8

2.1. High-level diagram (data flow) ... 8

2.2. Back end components’ description .. 9

i. Data collector (DC) ... 9

ii. Misinformation Detection (MD) ... 14

iii. Misinformation Flow Analysis and Prediction (MFAP)..................................... 15

iv. Plugin Gateway and Tweet Store ... 17

v. Rule Engine ... 17

vi. Perception Flow and Behaviour Mining (PBM) ... 19

2.3. Front end components’ description .. 20

vii. Browser Plugin ... 20

viii. Dashboard ... 21

2.4. Hosting Architecture .. 21

3. API documentation ... 23

3.1 Data collector (DC) .. 23

3.2 Misinformation Detection (MD) .. 23

3.3 Plugin Gateway ... 24

3.4 Tweet Store ... 24

4. Conclusions .. 25

6

D4.4: Generic Co-Inform architecture – Version 4

Table of Figures

Figure 1 High Level Architecture .. 8

Figure 2 Crawling and Text Analysis .. 11

Figure 3 Data Collector .. 13

Figure 4 Misinformation Flow Analysis and Prediction ... 16

Figure 5 API Gateway and Tweet Store ... 17

Figure 6 Example of rule for credible tweets .. 18

Figure 7 Example of rule triggering an action ... 19

Figure 8 Perception and Behaviour Mining .. 20

Figure 6 Browser Plugin ... 21

7

D4.4: Generic Co-Inform architecture – Version 4

1. Introduction
Misinformation online generates misperceptions. The speed and ease in which false news

spread on social media have a massive impact on current affairs and policies. By bringing

together a multidisciplinary team of researchers and experts in computer science,

behavioural science, and sociology, Co-Inform aims at engaging all stakeholders in fighting

misinformation by providing them with the tools to identify ‘fake news’ online, understand

how they spread, and provide them with verified information.

To this end, Co-Inform will integrate its ICT tools and services (WP3) and policy encodings

(WP2) to deliver a co-created misinformation resilience platform in the form of:

• A browser plugin to raise citizens’ awareness of fully or partially misinforming

content, of related fact-checking articles and corrective information, of average

citizens’ perceptions towards this content, and of key pro and against comments

from fellow citizens.

• A dashboard for fact-checking journalists and policymakers, showing that

misinformation was detected, where it originated from, how and where it has

spread and will spread in the near future, what’s the current and predicted public

perception, and what are the key comments about it from the public. The

dashboard will also show the news articles or information that users requested

to be fact-checked.

This deliverable describes the high-level architecture of the Co-Inform platform, including

the interaction between its expected components.

While work within WP2, WP3 and WP4 has not yet ended, this is the final version of the

architecture. It build on the contents of D4.3 and feeds from the developments in the

framework of WP2, WP3 and WP4. Since most of the development work has not yet ended,

this architecture aims to be flexible enough to accommodate any further requirements

elicited within WP1 throughout the project, while providing a useful interface to the data

through their API and user interfaces.

While the specific details will evolve with the project's needs, this general architecture will

serve as a good foundation to build around.

8

D4.4: Generic Co-Inform architecture – Version 4

2. Platform architecture design

2.1. High-level diagram (data flow)

The following diagram illustrates the high-level architecture proposed for the Co-Inform

platform:

Figure 1 High Level Architecture

BP: Browser Plugin
PG: Plugin Gateway
MD: Misinformation Detection
DC: Data Collector

MFAP: Misinformation Flow Analysis and
Prediction
PBM: Perception Behaviour Mining

The following components will be needed to implement the Co-Inform architecture, based

on the technical proposal submitted to the European Commission and the latest

developments within WP2, WP3 and WP4.

While this is the last version of the architecture document, at this stage the co-creation for

the Co-Inform tools within WP1 is not final and further workshops are scheduled after this

deliverable is submitted. It means that the final implementation of these components may

be subject to changes. Depending on the specific requirements gathered within the activities

carried out in WP1, some of these components may be integrated into a single component

or some of them could be split in other modules.

9

D4.4: Generic Co-Inform architecture – Version 4

For this reason, this architecture aims to be flexible enough to accommodate any further

requirements elicited within WP1 throughout the project, while providing a useful interface

to the data through their API and user interfaces for partners working within WP2, WP3 and

WP4 (i.e., any new modules will follow the general Gateway/OpenAPI of the architecture).

2.2. Back end components’ description

i. Data collector (DC)

The Data Collector (DC) is the module in charge of collecting the information that is

processed using ESI’s industry-leading text analytics technology. Broadly speaking, this

module accepts as an input a list of sources and configurations that it uses to start a text

analysis process. After a short time, the found documents, along with the analysis results,

are placed in a database; the contents of which are searchable and accessible to other

modules via an API.

Next, we explain the various terms, data structures and subcomponents in more detail.

The Data Collector Front End (DC FE) provides a way to specify and manage (i.e. add,

remove, edit) sources and configurations to the DC. Although the types of supported sources

have to be formally defined as part of pilot requirements in WP1, we provide support for the

following types of sources: websites to crawl, RSS feeds, social media accounts/pages,

search keywords and off-line documents (e.g., PDFs, Word documents, etc.). Besides

specifying the type of the source, the administrator has to specify additional configuration

parameters such as:

• Locator: this will typically be a URL to describe the site (e.g. https://snopes.com),

rss feed (e.g. https://www.snopes.com/feed/), search engine (e.g. google, bing +

keywords), location of the off-line documents. Additionally, we also support

structured data sources to ingest ClaimReviews1 published by third parties like

ClaimsKG2 and datacommons3.

• Collection: Since we have multiple pilots in Co-Inform, we keep documents from

each pilot in a separate ‘section’ of the database. This means that sources need

to be bound to a specific collection/pilot. We assume that most sources will be

specific to each pilot, although in some rare cases it may be possible that the

same source will be used in multiple collections. The system may process these

sources multiple times, although this could be avoided as part of the

implementation of the data collector. Another reason why specifying a collection

is useful is because we may want to perform special types of analyses on

documents for a particular use case in the future (e.g., if we know that the use-

case is migration, we may want to use a custom document classifier on these

documents. Likewise, if we know that the use case is about a specific area in

1 Available at: http://schema.org/ClaimReview
2 Available at: https://data.gesis.org/claimskg/
3 Available at: https://datacommons.org/factcheck

https://snopes.com/
https://www.snopes.com/feed/
http://schema.org/ClaimReview
https://data.gesis.org/claimskg/
https://datacommons.org/factcheck

10

D4.4: Generic Co-Inform architecture – Version 4

Sweden, we may want to provide a text analysis service that has a more fine-

grained knowledge of places, people and political issues in Sweden, rather than

using a generic text analysis service).

• Frequency: how often should the source be re-crawled. Some types of sources

are dynamic (i.e., they change every few hours, such as news feeds), while

others are static (e.g. news articles).

• Crawl depth: in the case of websites to crawl, but also social media accounts and

search keywords, it can be useful to not only collect the initial website and social

media posts, but also to collect further pages/posts referenced by them.

The configuration options presented above are indicative. We specify the list of configuration

parameters based on requirements, implementation and usage. At the moment, we have

implemented the DC FE as a graphical interface (GUI) that is only accessible to

administrators from ESI. In the future we may consider providing an API, since it can be

more flexible. However, it is still unclear who will be the stakeholders who should have

access to this API. In general, it makes sense to restrict access to this interface as it can

have an impact on the number of documents that will be in the system, thus affecting

possible system performance. An overly broad selection of sources can result in overly large

collections of documents, which will make the overall system harder to use as there may be

too many documents to explore and analyse.

The Data Collector submodule uses the sources and configurations specified using the DC

FE to crawl the web, find documents and analyse them. As described above, some sources

may be re-crawled at defined intervals. Figure 2 describes the working of this submodule in

more detail and shows that it has two main functionalities: crawling and datamining, .

• The crawler (Data Processing Engine in Fig. 2) processes the input document

(e.g. an html page or PDF) and extracts its textual content and metadata (e.g.

published date, author). A recent development that is relevant to Co-Inform is

that many fact-checking articles are now including metadata

(https://schema.org/ClaimReview)4 that makes it easier for machines to gather

the main claim being evaluated and provide a basic result for the fact-checking

exercise. If this kind of sites will be included in the pilots, it may be necessary for

the Data Collector component to include this kind of metadata as part of the

extracted document (and eventually include this information as part of the

database).

• The datamining step enriches the extracted document by automatically adding

annotations such as categories (according to various generic taxonomies such

as Intelligence, Crime and Terrorism), entities (places, people, organisations,

domain specific), sentiment/emotion and relations (tuples or triples between

entities and/or categories). Depending on the languages supported by the text

analysers, the original document text may need to be translated. In particular, it

may be necessary to translate all non-English documents into English (using third

party machine translation services), to make it easier for researchers to evaluate

and inspect the gathered documents. Another important step as part of

datamining relates to the extraction of relevant sentences and claims from

4 Fact-checking sites do this because it helps search engines such as Google or Bing to
index these sites and highlight them as part of search results.

https://schema.org/ClaimReview

11

D4.4: Generic Co-Inform architecture – Version 4

documents. This step makes it possible to assign credibility and accuracy

ratings at the sentence level instead of at the document level.

The database provides an API for accepting and updating analysed documents and claims

and stores them in representations optimised for storage and retrieval. It also provides a

low-level API for retrieving analysed documents. Since this is an internal API, we do not

specify it in further detail in this document and leave it as an implementation issue. The main

constraints are that it must be able to store textual data (the content of the documents),

metadata and extracted fields. Ideally, the internal API will allow for exploratory search of

documents based on facets, since this allows exploring the dataset in an intuitive way (e.g.

each search response lists the number of results which have a specific category or entity).

Finally, the database must be deployed in such a way that it safeguards in both a physical

and legal manner any personal data. Therefore, the database will be compliant with

requirements of information security as well as associated legal requirements laid down in

GDPR and the project’s Data Management Plan (D 7.1). As the project develops, data

controllers and/or data processors (all project partners) will ensure to take appropriate

measures in a case-by-case manner when faced with direct or indirect personal data

following the provisions of GDPR article 4 et al. Further distinction will be made whenever

data can be anonymised and therefore falling outside the scope of GDPR. Naturally, this

needs to be continuously analysed in the consortium, since we need to balance:

• The fact that most sources are publicly available: i.e. does it make sense to

anonymise mentions of Donald Trump in news articles? Similarly, mentions of

users in Facebook or Twitter are already searchable.

• Informational requirements by downstream components. For example, the

Misinformation Detection component may only work (or work much better) if the

identity of authors of documents are known; hence in this case, anonymising this

information will be counterproductive to the goals of the project.

Figure 2 Crawling and Text Analysis

12

D4.4: Generic Co-Inform architecture – Version 4

The content collector API provides an interface available to other modules in the system

for exploring and retrieving analysed documents. The API is available as a web service (e.g.

using REST), over a secure connection (e.g. requiring authentication and using secure

HTTP). The API provides two main services:

• (document) search: can be used to search and explore documents in a

particular collection. This service has a long list of input parameters, described

in D3.1, but they can be conceptually conceived as four types of input

parameters:

o Collection: a unique name or identifier

o Keywords: a list of keywords that need to be matched against the text in the

document. If deemed necessary, we may provide a simple query language

similar to that used by well-known search engines in order to allow users to

make some keywords mandatory, to allow for conjunction or disjunctions of

keywords, etc.

o Filters: a list of filters to narrow the set of results. These filters will typically be

based on facets returned by previous search results. Filters will include

categories, entities, dates (published, acquired), authors, sources, etc.

o Pagination: since search results may be in the order of thousands of

documents, users may need to request the results in “pages”, where each

page has a certain number of results.

The output of this service is also described in detail in D3.1, but they include

fields like:

o url: used to identify the document

o metadata: a selection of the most relevant metadata (e.g., title, author,

publisher, source, publishing date, published metadata).

o Search result metadata: total number of results, pagination information,

available facets.

• Collection: returns a list of collections (or sections of the database) that are

available to search.

• Claim/search: can be used to find claims extracted from collected documents or

structured datasets of ClaimReviews.

• Url/Collect: allows on-the-fly semantic analysis of documents on-line. Often, a

user will want to assess the credibility of e.g. a tweet that links to an on-line

document. If that document has not been previously crawled by the content

collector, modules are not able to assess their credibility. To address this issue,

this service receives a new URL, retrieves and analyses the document. The

document can optionally be included in one of the collections.

To make integration with other components as easy as possible, we provide a specification

of this API in a format that allows for easy client generation and testing, like OpenAPI

(https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0. md) and

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md

13

D4.4: Generic Co-Inform architecture – Version 4

Swagger (https://swagger.io/solutions/api-design/). The specification can be found at

https://co-inform.github.io/claim-cred-api/

In terms of performance, the requirements still need to be specified as part of WP1.

However, in technical terms, we assume that the Data Collector should be able to process

documents in both batch mode and monitoring mode. The batch mode is useful at the

beginning of a pilot, as many sources need to be ingested (depending on the quantity of

sources and documents this may take minutes or hours). Once the initial set of sources has

been processed, the monitoring mode keeps track of new documents at regular intervals.

Analysis of these results should become available after a few minutes. Searching services

should provide search results in mere seconds and quicker than that if they are to be used

for interactive user-facing applications (which should be possible by using appropriate

paging and search query parameters).

In terms of volume of documents, we expect that the conjunction of all pilots will not require

storage of more than about ten million documents. If more documents are expected or

required by downstream components or specific pilots, this will need to be specified in

advance, since this may require special deployment plans to ensure good performance for

such a volume of documents.

Figure 3 Data Collector

For more information about the implementation of this component within Co-inform, we refer

to D3.1.

https://swagger.io/solutions/api-design
https://co-inform.github.io/claim-cred-api/

14

D4.4: Generic Co-Inform architecture – Version 4

ii. Misinformation Detection (MD)

The Misinformation Detection (MD) module is developed as part of T3.2 in WP3 and aims

at detecting misinformation using different methods. This will help managing misinforming

content in large amounts of documents on social media or other information sources. As

part of the work in T3.2, different models and services will be considered, such as an

automated misinformation detection tool, and a dubious URL identifier service.

In general, the models developed by WP3 require annotated data and rely on Machine

Learning (ML) models. Such data is obtained from existing third-party data sources and

from datasets shared with the Co-Inform consortium such as the data collected through the

Data Collector (DC) module (section 2.2.i above).

The input data is either given as URLs that need to be analysed or as textual content as well

as annotation labels if available that are used for training the MD services (e.g.

information/misinformation labels). This data is collected from different information sources

such as social media websites (e.g. Twitter, Reddit) or news websites. In general, this

information is useful both for detecting the claims on social platforms (new ones and sharing

known ones) and for analysing their spread and evolution.

Besides a particular content or claim, the following external information is used as input:

• Historical data about claims. Fact-checking datasets are used both for spotting

and for predictive models. This type of data needs to contain information about

particular claims (e.g. who, what, where and when a claim has been done). Also,

some information from the fact-checking process of known fact-checker sources:

e.g., a label indicating the type of claim (e.g., factual, fake, satire, ...), the author

of the reviewing process;

• Information network and/or social network. Another important type of input that

is used is the network associated with the author of a claim or the claim

information network (i.e., the interconnection between different claims). This data

will be particularly relevant for bot discovery and the Misinformation Flow

Analysis and Prediction (MFAP) module.

In general, the models return probabilities of a given information (or URL or account) to be

related to misinformative or informative content (or another relevant label).

The trained MD services follow standard API development practices by providing RESTful

web service where the claim or other information that needs to be check is submitted to a

service and a JSON object containing probabilities and labels is returned.

Currently, three different services or components are being developed as part of the MD
module: 1) MisinfoMe, a service for identifying misinformation based on information sources
and historical annotated data; 2) Claim Credibility, a claim detection service that extracts
important text snippets from documents; and 3) Stance Detection, a service that assigns a
veracity score to a tweet by analysing its textual features and the stances towards it.

• MisinfoMe: the first service takes inputs from the DC component and other data
sources and provides an API that can be used to see the relation of sources
and twitter accounts with misinformation. For a certain source, it is possible to
see how experts (fact-checkers and other evaluations) reviewed or debunked it.

15

D4.4: Generic Co-Inform architecture – Version 4

And for a certain twitter account it is possible to see the interaction it had with
misinformation, fact-checking, verified news and debunked ones. These API
provide the results of analysis using REST.

• Claim Credibility: as part of the MD module, the claim detection service is
designed for extracting sentence claims from textual content so they can be
verified against an historical claim database or additional components of the MD
module. The model is developed using ML and is trained on multiple datasets
from various domains, so it is possible to extract claims in multiple situations.
Although the claim API is still evolving, it follows the Open API v3 specification
(http://spec.openapis.org/oas/v3.0.2) and provides an interactive
documentation using Swagger (https://swagger.io). The API accepts both
textual input or URLs and returns a list of sentence claims. Another service that
has been implemented as part of the MD is the claim credibility submodule, that
receives a sentence and predicts its credibility based on semantic similarity with
sentences in crawled documents

• Stance Detection: finally, a third service is designed for content analysis, which
assigns the credibility of tweet by analysing the source tweet and its replies (max
8 replies due to the restriction). The service has been developed using a two-
phase pipeline based on ML models, and the pipeline is trained with the
RumourEval2019 dataset5. The pipeline assumes that the source tweet contains
rumour. It first detects the stances of the tweet as supporting, denying,
questioning or commenting towards the rumour. Then, a second ML-based
model evaluates the stances along with textual features and predicts the
probability of the veracity for true, false and unverified cases. Finally, the
credibility of the tweet is assigned by aggregating the for each veracity values.

The MD module is also being extended so that parameters can be used for affecting its
computation such as which Fact-checker or what content to trust. The new API is built on
top of a computational graph and will return additional information besides the information
credibility score such as the confidence in a result. The parametrisation aims to be used by
the rule engine.

The MD module and APIs will be connected and work together with the Misinformation

Flow Analysis and Prediction (MFAP) module by providing the primary information

necessary to analyse the flow of misinformation in social networks.

iii. Misinformation Flow Analysis and Prediction (MFAP)

This Misinformation Flow Analysis and Prediction (MFAP) module will work together with

the Misinformation Detection (MD) module using data similar to the one used by the MD

module. The aim of this module is to determine patterns of different types of misinformation

across the social networking platforms and to provide different metrics and measures

associated with particular information flows in social networks in order to better understand

how misinformation spread and evolves.

5 Available at: https://www.aclweb.org/anthology/S19-2147/

http://spec.openapis.org/oas/v3.0.2
https://swagger.io/so%20lutions/api-design
https://www.aclweb.org/anthology/S19-2147/

16

D4.4: Generic Co-Inform architecture – Version 4

Similar to the previous module, the different services provided for the MFPA module will

require historical data from different data sources including data collected by the Data

Collector (DC) module. This module will require different types of input such as:

• News articles and historical data. Data collected over time such as the

information collected by the DC module can be used for making misinformation

predictions.

• Information network and/or social network data. This data can be used to

understand the topology and typology of the network that connects the different

actors (publishers, accounts influenced by the content) identifiable in the

historical data.

• Misinformation analysis tools. The MD module can be used for accessing

important information about information nodes and actors and can be used to

label some specific nodes in the social graph.

With this information available, the MFAP module should be able to track over time the

diffusion of the claim instances, their evolution, reception, and amplification by different

actors. The flow analysis will apply ML models that can be used to capture temporal features

(such as the impact of a certain claim over time) of the flow of misinformation.

This module will have several outputs, that will be made available to other modules. The

results provided will be of different nature, such as the ability to predict the effect of particular

type on misinformation on particular communities and demographics.

Figure 4 Misinformation Flow Analysis and Prediction

17

D4.4: Generic Co-Inform architecture – Version 4

iv. Plugin Gateway and Tweet Store

Following modern web application best practices, this module acts as a single-entry point

for all the requests generated by the browser to the Co-Inform platform. Once a request is

received, the Plugin Gateway (PG) extracts certain data that will be sent to the

Misinformation Detection (MD) module for later processing. At the same time, anonymised

statistical data is sent to the Perception Flow and Behaviour Mining (PBM) module.

Given that the MD module can take up some considerable time solving a request, a unique

identification number will be returned to the Browser Plugin (BP) on every request made.

It is the BP’s responsibility to query the PG for a resolution on the initiated request by

providing the unique identification number. With this behaviour a more flexible, fault-tolerant,

and scalable system is achieved.

The PG is complemented with a database acting as a MD cache to improve requests

resolution time, so the same request is not sent twice to the MD module and to reduce traffic

in the system. To further reduce time spent collecting information from the internet due to

restrictions in public and free APIs, a Twitter cache named Tweet Store has been

implemented. This cache saves all the Tweets that the MD module collects for its

processing, allowing other modules to query that cache and save a call to Twitter’s rate-

limited API.

Figure 5 API Gateway and Tweet Store

v. Rule Engine

The Rule Engine (RE) manages the responses from the Misinformation Detection (MD)

components and provides an appropriate response or action to the Browser Plugin (BP) in

18

D4.4: Generic Co-Inform architecture – Version 4

real time. It will be triggered by the Plugin Gateway (PG) whenever a request is received

and evaluate a set of previously defined in the system.

The RE extends the JEasy6 rule engine, and it is integrated into the PG as library. JEasy

supports the user defined rules in json format. The rules are defined as Figure 5 where

“name” is the identifier of the rule, “description” describes of the rule, “priority” is the order

of the rule execution, “condition” defines the parameters that activate the proper action or

response of the rule, and “actions” define the list of actions based on the “condition”, which

activates the rule execution.

The details of the Co-inform plugin rules are described in D2.2. Currently, the rules7 that

assign a credibility scores to tweets, such as the rule in Figure 6, and the rules that trigger

the of social translucence actions such rule in Figure 7 are integrated into the platform.

{

 "name": "credible",

 "description": "checks the post and flags as credible",

 "priority": 2,

 "condition": "claimcredibility_tweet_claim_credibility_0_credibility > 0.5

&& claimcredibility_tweet_claim_credibility_0_confidence > 0.7",

 "actions": [

 "callback.getModuleCredibility().put(\"claim_similarity\",

Credibility.not_credible_post);"

]

 }

Figure 6 Example of rule for credible tweets

6 Available at: https://jeasyrules.github.io/jeasyrules-core/

7 Rules for credibility can be found at: https://github.com/co-

inform/policy_manager/tree/master/src/main/resources/rules/deployment/credibility

_mapping

Rules for interventions can be found at: https://github.com/co-

inform/policy_manager/blob/master/src/main/resources/rules/deployment/interventi

ons/

https://jeasyrules.github.io/jeasyrules-core/
https://github.com/co-inform/policy_manager/tree/master/src/main/resources/rules/deployment/credibility_mapping
https://github.com/co-inform/policy_manager/tree/master/src/main/resources/rules/deployment/credibility_mapping
https://github.com/co-inform/policy_manager/tree/master/src/main/resources/rules/deployment/credibility_mapping
https://github.com/co-inform/policy_manager/blob/master/src/main/resources/rules/deployment/interventions/
https://github.com/co-inform/policy_manager/blob/master/src/main/resources/rules/deployment/interventions/
https://github.com/co-inform/policy_manager/blob/master/src/main/resources/rules/deployment/interventions/

19

D4.4: Generic Co-Inform architecture – Version 4

{

 "name": "credible",

 "description": "checks the post and flags as credible",

 "priority": 2,

 "condition": "claimcredibility_tweet_claim_credibility_0_credibility > 0.5

&& claimcredibility_tweet_claim_credibility_0_confidence > 0.7",

 "actions": [

 "callback.getModuleCredibility().put(\"claim_similarity\",

Credibility.not_credible_post);"

]

 }

Figure 7 Example of rule triggering an action

For more information about the implementation of this component within Co-inform, we refer

to D2.1 and D2.2.

vi. Perception Flow and Behaviour Mining (PBM)

Using the analysis and classification conducted by the Misinformation Detection (MD)

module and the Misinformation Flow Analysis and Prediction (MFAP) module and using

the statics and reactions collected by the Browser Plugin (BP) made available by the

Plugin Gateway (PG), this module will provide statistics on misinformation behaviours.

This module will provide dashboards and statistics about the misinformation managed within

the whole system. The specific parameters of each end-user will be inputted into the PBM

module through a web front end.

User characteristics that could influence their engagement with misinformation might include

age, culture, prior opinions, interests, exposure, etc. The PBM module will attempt to collect

such information (e.g. from user’s profiles, timeline analysis) to support the prediction

analysis of misinformation flow. Spreading and acceptance or rejection of misinformation

can be analysed (e.g. using opinion mining) to gauge the user’s behaviour towards a

particular piece of misinformation, and how this behaviour changes (or does not change)

after an intervention (which will be provided by WP5) is executed. To this end, services for

extracting user characteristics and opinion will be required, which would take input data such

as: user profile, user posts (timeline), and off-the-shelf opinion mining methods.

20

D4.4: Generic Co-Inform architecture – Version 4

Figure 8 Perception and Behaviour Mining

2.3. Front end components’ description

vii. Browser Plugin

The Browser Plugin will be the main end user module (i.e. for social media users). It will

analyse the end user navigation data and together with both the Misinformation Flow

Analysis and Prediction (MFAP) module and the Misinformation Detection (MD) module

it will inform the user about the credibility of the information being accessed. The

communication between the plugin and both the MD and MFAP is done through the Plugin

Gateway (PG) module that acts as an API gateway8.

The plugin’s architecture is based on a centralised architecture. For every relevant website

that the user loads, the plugin will send data to the PG. This data will be the content of the

website (mainly the text) and some metadata (website’s URL, timestamp). Before the data

is received by the MD or the MFAP, some anonymisation methods, such as IP removal,

assignation of a transaction ID, etc. will be applied. Then, the data will be processed in order

to diagnose whether it corresponds to misinformation or not. After the diagnostic, a response

will be sent to the plugin which will show the user a confidence level on the website or post

that is currently visiting.

8 https://microservices.io/patterns/apigateway.html

21

D4.4: Generic Co-Inform architecture – Version 4

Figure 9 Browser Plugin

viii. Dashboard

The Dashboard will be the second end user interface, and it is being designed having the

needs of policymakers and journalists in mind. The dashboard will show what misinformation

has been detected, where it originated from, how and where it has spread and will spread

in the near future, what’s the current and predicted public perception, and what are the key

comments about it from the public.

Based on the activities conducted within WP1, the following features have been considered

for their implementation as part of the dashboard:

• Show more information on why a claim has been flagged, who flagged it and

when.

• Provide aggregate data on misinformative content.

• Provide access to statistics for validation and information to assess validity of

sources.

• Allow policymakers and journalists to give an accuracy rating.

• Show how information has spread online (information trail) over time, and at

specified locations.

Furthermore, the dashboard will provide central access to other fact-checking and validation

tools developed by third parties. To the extent possible, mechanisms for collaboration

between and within professional groups will be also studied for their integration into it.

The dashboard will be developed as a web application, with an extendable architecture, and

will be made open source and freely available.

2.4. Hosting Architecture
Following, we provide an overview of each module’s hosting architecture, as well as for each

of their components:

22

D4.4: Generic Co-Inform architecture – Version 4

For the Misinformation Detection (MD) module and its components:

• MisinfoMe is hosted on Docker containers running FastAPI.

• Claim Credibility is hosted using docker containers and is an ML model

developed in PyTorch

• Stance Detection is hosted on Ubuntu servers running as docker container.

The Plugin Gateway (PG) is hosted on a Linux server running nginx. It uses a redis cache

for storage of querys and responses for quick response times. The TweetStore is hosted

on a Linux server running nginx. It uses a MariaDB SQL database for storing the data.

23

D4.4: Generic Co-Inform architecture – Version 4

3. API documentation
This section sets forth Co-Inform’s application programming interface (API): a set of

subroutine definitions, protocols, and tools for building application software. This

documentation will allow developers to build new applications that connect to the tools.

3.1 Data collector (DC)

Documented in https://co-inform.github.io/claim-cred-api/, in particular endpoints

• /search

• /collections

• /claim/search

• /url/collect

3.2 Misinformation Detection (MD)

The main misinformation APIs are documented in the MisinfoMe APIs,

https://github.com/co-inform/misinfome-api. There are three different types of APIs: 1)

the legacy credibility models; 2) the new parametrised credibility model, and; 3) the claim

identification API. Following, we describe the most relevant APIs.

1) For the legacy credibility model:

• /credibility/sources/

• /credibility/tweets/{tweet_id}

• /credibility/users

2) For the parametrised credibility model:

• /credibility/assessor

• /credibility/publisher

• /credibility/agent

• /credibility/document

• /credibility/rulesets

3) For the claim identification:

• /claimid//embedding

• /claimid/identify

• /claimid/extract

For Claim Credibility, https://co-inform.github.io/claim-cred-api/, endpoints:

• /claim/predict/credibility

• /tweet/claim/credibility

https://co-inform.github.io/claim-cred-api/
https://co-inform.github.io/claim-cred-api/

24

D4.4: Generic Co-Inform architecture – Version 4

For Stance Detection, the API is described in http://coinform-content-analysis.west.uni-

koblenz.de/docs, in particular endpoints:

• /post/veracity

• /post/veracity_test

3.3 Plugin Gateway

Documented in https://co-inform.github.io/gateway-api, in particular endpoints:

• /twitter/tweet

• /twitter/evaluate

3.4 Tweet Store

Documented in https://co-inform.github.io/tweetstore-api, in particular endpoints:

• /tweet/{tweet_id}

• /tweet/{tweet_id}/replies

• /tweet

http://coinform-content-analysis.west.uni-koblenz.de/docs
http://coinform-content-analysis.west.uni-koblenz.de/docs
https://co-inform.github.io/gateway-api
https://co-inform.github.io/tweetstore-api

25

D4.4: Generic Co-Inform architecture – Version 4

4. Conclusions
This deliverable describes the high-level architecture of the Co-Inform platform, including

the interaction between its expected components. Specifically, it provides a high-level

specification for the platform components and their expected interaction, namely:

• Data Collector (DC)

• Misinformation Detection (MD)

• Misinformation Flow Analysis and Prediction (MFAP)

• API Gateway and rule engine

• Perceptions and Behavior Mining (PBM)

• Browser Plugin and the dashboards

This version of the deliverable also specifies the hosting architecture and the API

documentation.

This is the final version of the architecture. It should be flexible enough to accommodate any

further requirements elicited within WP1 throughout the project, while providing a useful

interface to the data through the API and user interface. While the specific details will evolve

with the project's needs, the general architecture will serve as a good foundation to build

around.

