
Meta-Reasoning about Decisions in 
Autonomous Semi-Intelligent Systems 

 
Mats Danielson 

Dept. of Computer and Systems Sciences 
Stockholm University 

PO Box 7003 
SE-164 07 Kista, SWEDEN 

+468 161 540 
mats.danielson@su.se 

 
Love Ekenberg 

International Institute of 
Applied Systems Analysis 

Schlossplatz 1 
A-2361 Laxenburg, Austria 

+468 161 679 
ekenberg@iiasa.ac.at 

 
ABSTRACT 
For intelligent systems to become autonomous in any real sense, 
they need an ability to make decisions on situations that were not 
entirely conceived of at compile-time. Machine learning algorithms 
are excellent in mimicking the behaviour of some gold standard 
role model, and this can include decision making by the role model. 
But once out of familiar contexts, the decision making becomes 
harder and needs an element of more independent probabilistic 
reasoning and decision making. This paper presents such a method 
based on a belief mass interpretation of the decision information, 
where the components are imprecise and thus uncertain by means 
of intervals.  

CCS Concepts 
• CCS → Applied computing → Operations research → 
Decision analysis → Decision-making 

• CCS → Applied computing → Operations research → 
Decision analysis → Multi-criteria optimization 

Keywords 
Autonomous intelligent systems; decision analysis; meta-
reasoning; imprecise probabilities. 

1. INTRODUCTION 
In the coming digital machine age, more and more decisions will 
be made by non-human entities. This translates, in the vast majority 
of cases, to software running on digital silicon hardware. We are 
witnessing a surge in the field of artificial intelligence (AI), a field 
with concepts of which there are many definitions. The early (pre-
1980) definitions of strong and weak AI notwithstanding, AI has 
over the years meant and still is taken to mean vastly different 
approaches and phenomena. For some, it mostly encompasses 
machine learning algorithms and training, sometimes even focusing 
on deep learning above all. For others, it contains the majority of 
digitalisation witnessed in society, ranging from all administrative 
data processing systems, over all internet activities, to Internet of 
things. Trying to cover the middle ground, we will focus on 
intelligent autonomous or semi-autonomous systems running some 
kind of information gathering software. It could be sensors 
connected to different kinds of inference machines, but it could also 
be other means of inferring knowledge from data. One problem 
with some approaches is that they mix inference with decisions. If 
a system lets a learning algorithm train on an adequate and 
sufficiently large set of data, the outcome will be a (hopefully) good 
categorisation of the situation at hand. But some approaches let the 
system train not on categories of situations but rather directly on 
decisions. This, unfortunately, leads to less flexible and less 

transparent system properties since the detection, categorisation, 
and decision steps are all tied together and cannot be used or 
improved on separately. In this paper, we suggest a decision-
making mechanism that is open and transparent and is well-suited 
for processing the output from detection and categorisation 
algorithms that deal with imprecise and probabilistic data, even 
taking different criteria (different categorisations of the same 
situations from different perspectives) into account. Output from 
Bayes’ nets, fuzzy inference systems, and traditional machine 
learning all fall into this set of feasible input, the latter at least in 
the cases where the networked learned can express its certainty of 
the inference reached by some measure. 

We will in this paper discuss the representation and evaluation of 
second-order information in order to allow autonomous entities to 
make decisions based on incomplete input data in the form of 
imprecise utilities, probabilities, and criteria weights. The approach 
avoids the introduction of new concepts into the decision models, 
such as set membership functions or similar formalisms, and 
instead use second-order distributions of belief in the basic utilities, 
probabilities, and criteria weights which then allows for better and 
more transparent discrimination between the resulting values of the 
decision alternatives. The ability to use belief distributions over 
probabilities, values, and criteria weights enhances the 
transparency of the results since no new concepts have to be 
introduced in the evaluation of the model. 

2. BACKGROUND 
In the research community, there have been many suggestions as to 
how to handle the very strong requirements for decision-makers, 
whether machine or human, to provide precise information. Some 
main categories of approaches to remedy the precision problem are 
based on capacities, sets of probability measures, upper and lower 
probabilities, interval probabilities (and sometimes utilities), 
evidence and possibility theories, as well as fuzzy measures (see, 
for example, [1-5] for different suggestions). The latter category 
seems to be used only to a limited extent in real-life decision 
analyses since it usually requires a significant mathematical 
background on the part of the decision-maker. Another reason is 
that computational complexity can be problematic if the fuzzy 
aggregation mechanisms are not significantly simplified. 

A main issue with the above approaches is that they provide very 
little assistance when the results overlap, as is usually the case in 
real-life decision problems. This issue will be addressed in the 
paper. In Figure 1, the uncommon case of no overlap is illustrated. 
In the figure and the following figures, the belief distribution in the 
expected value is shown, i.e. with expected value on the x-axis and 



belief density on the y-axis. Since in Figure 1 all the belief in 
Action-1 is at higher expected values than that in Action-2, i.e., 
there is no chance that the expected value of Action-2 would be 
higher than that of Action-1, provided we accept the principle of 
maximizing the expected value. Thus, there is no doubt that the 
semi-intelligent system (SIS) should select Action-1.  

 
Figure 1. No overlap in expected value 

In Figure 2, the more common case of some overlap is illustrated. 
Since the belief in Action-1 is still significantly higher than that in 
Action-2, there is no reasonable doubt that the SIS should, also in 
this case, select Action-1. 

 
Figure 2. Minor overlap in expected value 

In Figure 3, on the other hand, the common case of large overlap is 
illustrated. Since now the belief in Action-1 and Action-2 overlap 
a lot, there is no clear-cut decision available as to whether the SIS 
should select Action-1or Action-2 in this case. In the following 
sections, we will suggest a computational model based on higher-
order belief for discriminating between actions in all of the cases 
above, especially focussing on the situation in Figure 3. We begin 
with the representation of knowledge before moving on to the 
evaluation of the representational model. 

                                                             
1 With decisions we are in this paper referring to larger, strategic choice 

problems rather than mainly reactive responses to stimuli.  

 

 
Figure 3. Major overlap in expected value 

3. HIGHER ORDER BELIEF 
Let us assume that we have an SIS, i.e. a system that is capable of 
handling situations that were not entirely conceived of at compile-
time. In order to be semi-intelligent under any reasonable 
interpretation of the terminology, it should be able to make 
decisions1 on its own. Further assume that it has a set of alternative 
actions at its disposal, from which the SIS is to choose one. The 
alternatives are being considered using information from a set of 
criteria. Thus, each alternative is assessed under each criterion. The 
criteria are then combined together using a weighting scheme under 
the traditional assumption of additivity, but to simplify the 
presentation in this paper we will only discuss the single-criterion 
case in which the expected value rule is to maximize the expected 
value of an alternative  

E(Ai) =  ∑k pik·vik 

where all the products pik·vik of an alternative Ai are added to form 
the sum.  

The expected value of each alternative under each criterion is 
represented by a decision tree. The components of such a decision 
tree are a root node, a set of probability nodes and consequence 
nodes. The probability and consequence nodes are in a standard 
model assigned unique numerical probability and value 
distributions. When an alternative Ai is chosen as the preferred 
action, there is a probability pij that an event occurs that leads either 
to another subsequent event or to a consequence with a value vijk. 

The SIS will in most cases, when operating in real-life contexts, not 
be able to acquire precise or complete information with respect to 
the probabilities and utilities. There will be information available 
but with uncertainty involved, and the idea is to use this uncertainty 
to our advantage by expressing it in a machine computable way. In 
[6], we describe a formalism for handling second-order belief by 
using a modified normal distribution of belief over the input data. 
Note that this is the distribution of belief in numerical assessments 
(i.e. second-order information) by the SIS. 

Let us further assume that the SIS has been able to establish 
intervals within which the particular decision variables 



(probabilities and utilities/values) lie. The beliefs in the numbers 
assigned to those variables are not uniformly distributed. Rather, 
the belief in outer boundary numbers is modelled to be less than in 
more central numbers [7-8], and since it is plausible to presume that 
the SIS has a higher belief in more central parts of its derived 
intervals for probabilities and utilities/value, the idea is to represent 
belief as distributions over those probabilities and values. 
The SIS should employ different distributions for probabilities and 
values because of the normalisation constraints for probabilities. 
For values, which is the simpler case, ordinary triangular 
distributions will do. They constitute a good-enough centre-
weighted representation of the SIS’s belief.  
Definition:  A unit cube is all tuples (x1, …, xn) in [0,1]n and a 
second-order distribution over that cube B is a positive distribution 
F defined on B such that 

∫ 𝐹(𝑥)	𝑑𝑉)(𝑥) = 1) ,  

where VB is the n-dimensional Lebesgue measure on B. 
For probabilities, a natural candidate is the Dirichlet distribution. 
The properties of the Dirichlet distribution, being a parameterised 
family of continuous multivariate probability distributions, makes 
it suitable for this purpose. The probability density function of the 
Dirichlet distribution is defined as 

𝑓-./(𝑝, 𝛼) =
Γ(∑ 𝛼.)5
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on a set {p=(p1,…pk)| p1,…,pk ≥ 0, Spi =1}, where (a1,…, ak) is a 
parameter vector in which each ai > 0 and G(ai) is the Gamma 
function. The Dirichlet distribution is a multivariate generalisation 
of the beta distribution, and the marginal distributions of Dirichlet 
are indeed beta distributions.  

The SIS will use a slightly different form due to the varying sizes 
of the intervals over which the belief will be distributed. This is the 
bounded Dirichlet distribution which is defined over a particular 
range instead of the standard interval [0,1]. Bounded beta 
distributions are then derived from this, yielding four-parameter 
beta distributions. Thus, we use a probability belief distribution by 
employing a bounded Dirichlet distribution f3(ai, ci, bi) where ci is 
the estimated most likely probability and where ai and bi are the 
boundaries for the support of the distribution (ai < ci < bi)  (cf. [9]). 

4. AGGREGATION PRINCIPLES 
To evaluate the decision situation means to determine the resulting 
distribution over the expected utility/value. Thus, there are only 
two cases to cover – multiplication and addition. 
Definition:  Let G be a distribution over two cubes A and B, and 
assume that G has positive support for the feasible distributions at 
level i in a decision tree, and for the feasible probability 
distributions of the children of a node xij. Also assume that f(x) and 
g(y) are marginal distributions of G(z) on A and B, respectively. 
Then the cumulative multiplied distribution of the two belief 
distributions is 

H(z) =B𝑓(𝑥)𝑔(𝑦)𝑑𝑥𝑑𝑦
EF

= G G 𝑓(𝑥)𝑔(𝑦)𝑑𝑥𝑑𝑦
H/J

K

7

K

= G 𝑓(𝑥)𝐺(𝑧/𝑥)𝑑𝑥
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where G is a primitive function of g, Γz  = {(x,y) | x·y ≤ z}, and  
0 ≤ z ≤ 1. 
Let h(z) be the corresponding density function. Then  

ℎ(z) = -
-H ∫ 𝑓(𝑥)𝐺(𝑧/𝑥)𝑑𝑥7

H = ∫ O(J)P(H/J)
J

𝑑𝑥7
H . 

Addition is handled by the standard convolution of two densities, 
restricted to A and B and the distribution h on a sum z = x+y, where 
we have the belief distributions f(x) and g(y) is consequently given 
by 

ℎ(z) =
𝑑
𝑑𝑧G 𝑓(𝑥)𝑔(𝑧 − 𝑥)𝑑𝑥

H

K
. 

Employing this iteratively, the SIS will obtain the distribution over 
the expected value (or expected utility). See [10-11] for a more 
detailed account of this.  

5. BELIEF DOMINANCE 
In most cases, the resulting distributions of belief in the expected 
values will significantly overlap. (For cases where they do not 
overlap, any simple mechanism would be able to pick out the 
preferred choice.) If it were a human that was the decision-maker, 
that person could ponder over the resulting beliefs and, perhaps 
using a software tool with graphic presentation of the results, study 
and assess the resulting beliefs. But an SIS must be able to make 
those decisions in a stand-alone, automated way. To achieve this, 
we suggest using the concept of belief dominance. In the following, 
we will discuss the case of a single criterion, but it can without loss 
of generality be extended to the multi-criteria case.  
Definition:  Given a decision problem P with two possible actions 
Ai and Aj, let dij denote the expression ∑k pik·vik – ∑k pjk·vjk over 
all consequences in the consequence sets that make up the 
alternative courses of action Ai and Aj in P. 
The index set pair captures the consequences within each of the 
alternatives that possess some desired property, in this case their 
value being at least as great as a given parameter. 

Definition:  Given a decision problem P and a real number d Î 
[0,1], an index set pair áKi,Kjñ(d) in P is a pairing of two sets Ki = 
{k ï vik ≥ d} and Kj = {k ï vjk ≥ d}. 
The parameter d varies and this represents a selection procedure for 
selecting the consequences within a pair of alternatives with the 
desired property. 

Definition:  Given a decision problem P and real numbers a,b,d Î 
[0,1], Mij[a,b] is the set {áKi,Kjñ(d) ï d Î [a,b]} in P. 
Thus, Mij[a,b] is the set of all different index set pairs in the range 
[a,b], i.e. all the combinations of index sets that satisfy the 
condition. Now we can define belief dominance. 
Definition:  Given a decision problem P, a function f, and two 
parameters a and b, an alternative Ai B-dominates another 
alternative Aj in P iff  

" áKi,Kjñ(d) Î Mij[I]  

 
and 

$ áKi,Kjñ(d) Î Mij[I] 
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From the definition of general belief dominance, we now derive 
operational concepts that an SIS could employ in separating 
alternatives with overlapping beliefs. 
First-order belief dominance means that the belief dominance 
function used is a function of only probabilities, i.e. f(pik,vik,a) 
above is a function g(pik) and likewise, f(pjk,vjk,b) is a function 
g(pjk). Further, if the range for the index set pairs is [0,1], we arrive 
at first-order belief dominance. 

Definition:  Given a decision problem P, an alternative Ai B1-
dominates another alternative Aj in P iff Ai B-dominates Aj with 
I = [0,1] and f(pik,vik,a) ≡ g(pik) ≡ pik and likewise for pjk. 
Second-order belief dominance means that the belief dominance 
function used is a function of both probabilities and values i.e. 
f(pik,vik,a) above is a function h(pik,vik) and likewise f(pjk,vjk,b) is 
a function h(pjk,vjk). Also in this case, the range for the index set 
pairs is [0,1]. 

Definition:  Given a decision problem P, an alternative Ai B2-
dominates another alternative Aj in P iff Ai B-dominates Aj with 
I = [0,1] and f(pik,vik,a) ≡ h(pik,vik) ≡ pik·vik and likewise for pjk. 
The ordinary expected value can also be seen as second-order belief 
dominance evaluated only by fully indexed pairs, i.e. pairs that 
contain all members of each alternative. 

Definition:  Given a decision problem P, an alternative Ai BE-
dominates another alternative Aj in P iff Ai B-dominates Aj with 
I = [0,0] and f(pik,vik,a) ≡ h(pik,vik) ≡ pik·vik and likewise for pjk. 
By inspection, BE-dominance is found to be corresponding to an 
evaluation rule that applies a probability and value-based formula 
to the alternative in order to reach a single-numbered numerical 
verdict on which one is to prefer. This is the ordinary expected 
value since the only index set pair generated by the [0,0]-range is 
the pair of complete consequence sets. To sum up, an SIS now 
could have a more complete set of decision rules at its disposal than 
if employing only standard techniques of expected utility and non-
overlapping intervals. When the SIS encounters overlap, it applies 
B1-dominance to see if that results in a sufficient ranking. In that 
case, a strong ranking is obtained. Otherwise, the next step is to 
apply B2-dominance to see if that results in a sufficient ranking, 
which then is a weak ranking but still better than trying to use the 
expected value which is the last resort if a decision must be made 
and all belief dominance techniques come up empty-handed. 

6. EXAMPLE 
Assume that an autonomous SIS agent entity has encountered the 
following imprecise and uncertain decision situation. It has to select 
between three actions, viz. Action-1, Action-2, and Action-3. For 
all three actions, its sensors and actuators have reported a lot of data 
that has been interpreted and aggregated into a decision situation in 
which each action is represented by an event tree containing 
uncertain interval probabilities and interval utilities/values. From 
this set of information, the agent computes interval-valued 
expected values which unfortunately overlap significantly. Thus, 
the agent entity is not able to choose between the alternative courses 
of action without further consideration. Assessing its belief in the 
probabilities and values, it uses the method in the preceding 
sections to arrive at distributions of belief over the actions’ 
respective expected value intervals. It starts with comparing the 
belief of Action-1 and Action-2 by studying belief dominance. In 
Figure 4, the distribution of belief is shown and in Figure 5, the 
accumulated distribution of belief is shown. We can see that 
although the belief overlaps considerably, the belief in Action-1 is 

stronger since Action-1 B1-dominates Action-2. This is seen by the 
fact that for each level of accumulated belief (y-axis), the sum of 
beliefs up to that point is for higher expected values for Action-1, 
i.e. its curve is always to the right, having higher expected value for 
any level of accumulated belief ranging from none (i.e. 0.00) to all 
(i.e. 1.00). Thus, Action-2 is found to be inferior to Action-1 and 
will not be considered by the SIS any further. 

 
Figure 4. Comparing Action-1 and Action-2 

(distribution of belief in expected values) 
 

 
Figure 5. Comparing Action-1 and Action-2 

(accumulated distribution of belief in expected values) 
Next, the SIS agent entity continues with comparing the belief of 
Action-1 and Action-3 by studying belief dominance. In Figure 6, 
the distribution of belief is shown and in Figure 7, the accumulated 
distribution of belief is shown. We can see that in this case, the 
Action-1 does not B1-dominate Action-3 since in the comparison 
in Figure 7, the accumulated curves cross. So the SIS has to move 
on to the weaker comparison tool of B2-dominance. Comparing the 
two actions in this way, the belief in Action-1 is seen to be stronger 
since Action-1 B2-dominates Action-3. This is seen by the fact that 
although the accumulated graphs cross for different levels of 
accumulated belief, the area where Action-1 dominates is larger 
than for Action-3. 
This way, the SIS entity is able to conclude that it should prefer 
Action-1 over the other two actions available. This decision is 
possible to do in an autonomous way even though there is a 
significant overlap in expected utilities and ordinary concepts of 
maximising the expected utility would not be able to discriminate 
between the various alternatives. 



 
Figure 6. Comparing Action-1 and Action-3 

(distribution of belief in expected values) 
 

 
Figure 7. Comparing Action-1 and Action-3 

(accumulated distribution of belief in expected values)2 

7. CONCLUSIONS 
In autonomous agent decision problems, it is usually impossible to 
assign precise numerical values to the different components of a 
decision model, and thus there is a need for representation and 
evaluation mechanisms that can effectively handle uncertain 
information in an autonomous way. Such models are not always 
immediately available, and to alleviate this problem, higher-order 
models such as belief mass representation can add both information 
and transparency, thus enabling a more discriminative analysis 
than, for example, using intervals alone are being proposed. In this 
paper, we describe a higher-order framework based on an 
evaluation method using a belief mass interpretation of the data 
involved. It involves a model where second-order information (in 
the sense of belief distributions over probabilities and values as 
well as aggregations thereof) is used for analysing decision trees. 
The framework presented in this paper is put to use for use in SIS 
decision situations where autonomy dictates the possible decision 
reasoning. 
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2 Note that the figures are simplified in the sense that the belief distributions 

displayed in the example are symmetric. In real-life situations, the belief 
in the resulting expected values are almost invariably asymmetric due to 
calculation aspects as discussed in [12]. 


